|
The SPARX project consists in an Soft-X-ray-FEL facility jointly supported by MUR(Research Department of Italian Government), Regione Lazio, CNR, ENEA, INFN and the University of Roma Tor Vergata. It is the natural extension of the ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1 and 2 GeV, for the first and the second phase respectively. The beam is expected to drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1 GeV and 2 GeV respectively, both in SASE and SEEDED FEL configurations. A hybrid scheme of RF and magnetic compression will be adopted, based on the expertise achieved at the SPARC. high brightness photoinjector presently under commissioning at Frascati INFN-LNF Laboratory.
|
|
|
- D. Alesini, M. Bellaveglia, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, L. Pellegrino, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario, E. Chiadroni
INFN/LNF, Frascati (Roma)
- A. Bacci
INFN/LASA, Segrate (MI)
- L. Catani, A. Cianchi
INFN-Roma II, Roma
- S. Cialdi, A. R. Rossi, L. Serafini
INFN-Milano, Milano
- L. Giannessi, M. Quattromini, C. Ronsivalle
ENEA C. R. Frascati, Frascati (Roma)
- M. Migliorati, A. Mostacci, L. Palumbo
Rome University La Sapienza, Roma
- P. Musumeci, J. B. Rosenzweig
UCLA, Los Angeles, California
- M. Petrarca
INFN-Roma, Roma
|
|
|
The characterization of the transverse phase space for high charge density relativistic electron beams is a fundamental requirement in many particle accelerator facilities, in particular those devoted to fourth-generation synchrotron radiation sources, such as SASE FEL. The main purpose of the SPARC initial phase was the commissioning of the RF photoinjector. At this regard, the evolution of the phase space has been fully characterized by means of the emittance meter diagnostics tool, placed in the drift after the gun exit. The large amount of collected data has shown not only that we can achieve the SPARC nominal parameters, but has also allowed for the first time a detailed reconstruction of the transverse phase space evolution along the drift, giving evidences of the emittance compensation process to occur as predicted by theory and simulations. In particular the peculiar behavior of a flat top longitudinal electron distribution compared to a gaussian distribution has been studied giving important insights for the correct matching with the following linac based on the double emittance minimum effect.
|
|