Paper |
Title |
Page |
TUBAU03 |
STARS an FEL to Demonstrate Cascaded HGHG
|
220 |
|
- M. Abo-Bakr, W. Anders, J. Bahrdt, R. Follath, K. Goldammer, S. C. Hessler, K. Holldack, T. Kamps, B. C. Kuske, A. Meseck, T. Quast, J. Knobloch
BESSY GmbH, Berlin
|
|
|
BESSY plans to build the BESSY Soft X-ray FEL facility, a second generation FEL for the VUV and soft x-ray range. The TDR was evaluated by the German Science Council and recommended for funding subject to the condition that cascaded high-gain harmonic generation (HGHG) be demonstrated beforehand. To this end, BESSY is proposing the demonstration facility STARS for a two-stage HGHG FEL. For efficient lasing from 40 nm to 70 nm, a 325 MeV driver linac is required. It consists of a normal-conducting gun, superconducting TESLA-type modules modified for CW operation and a bunch compressor. The two-stage HGHG cascade employs variable gap undulators, with the final amplifier being an APPLE-III device for full polarization control. A beamline with user experiment completes STARS, which is planned to remain operational even after the BESSY FEL comes online. This paper summarizes the layout of STARS, the main parameters and the expected performance.
|
|
FRAAU02 |
Status of the FEL Test Facility at MAX-lab
|
513 |
|
- M. Abo-Bakr, J. Bahrdt, K. Goldammer
BESSY GmbH, Berlin
- M. Brandin, F. Lindau, D. Pugachov, S. Thorin, S. Werin
MAX-lab, Lund
- A. L'Huillier
Lund University, Division of Atomic Physics, Lund
|
|
|
An FEL test facility is built on the existing MAX-lab linac system in collaboration between MAX-lab and BESSY. The goal is to study and analyse seeding, harmonic generation, beam compression and diagnostic techniques with the focus of gaining knowledge and experience for the MAX IV FEL and the BESSY FEL projects. The test facility will in the first stage be using the 400 MeV linac beam to generate the third harmonic at 90 nm from a 266 nm Ti:SA seed laser. The optical klystron is installed and magnetic system, gun and seed laser systems are currently being finalised. Start-to-end simulations have been performed and operation modes for bunch compression defined. The linac and beam transport system is already in operation. We report the status and layout of the project, the issues to be addressed, the solutions for bunch compression and operation. We also report on the prospects of extending the seeding to HHG laser systems.
|
|
|
Slides
|
|