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4th Generation Light Sources: XFEL
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Demands on Optical Timing Distribution

= 4-th Generation Light Sources demand increasingly precise timing
today < 100 fs, in 3 years: < 10fs , in 6 years: < 1fs?
-> Scalability to these levels should be possible.
= Must serve multiple locations separated by up to 1-5 km distances.
= This is beyond what a direct RF-distribution (coaxial cables) can handle.

- thermal drifts of coaxial cables
- drifts of microwave mixers

= [t will lead to a considerable reduction in cost and space.
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Optical Master Oscillator

A master mode-locked laser producing a very stable pulse train
(can be locked to a microwave oscillator for long-term stability)
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Why Optical Pulses (Mode-locked Lasers)?
TR = 1/fr A A /\ /N t

_ g frR 2frR NfrR
time
Photodetector frequency

= RF signal is encoded in the pulse repetition rate.
- Every harmonic can be extracted.

= Suppress Brillouin scattering and undesired reflections.

= Qptical cross-correlation can be used for timing stabilization.
= Pulses can directly seed amplifiers.

= Group delay is directly stabilized.
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Low-Jitter Mode-locked Lasers

Stretched-pulse Er-fiber laser
Tamura et al. OL 18, 1080 (1993)
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Semiconductor saturable absorber

based Er/Yb-glass laser
Schlager et al. OL 28, 2411 (2003).
Zeller et al, EL 40, 875 (2004).
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Phase Noise (Timing Jitter) Measurements

i Agilent Signal Analyzer 5052a @ 1GHz
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= Noise floor limited by photo detection
= Theoretical noise limit <1 fs
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Stabilized fiber links delivering the pulse train to multiple remote locations
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Timing Stabilization

isolator
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<100 fs
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Assuming no fiber length fluctuations faster than T=2nL/c.

L=1km,n=15 => T=1yus, f
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Short-term Stabilization using RF-mixers

PZT-based
fiber _
50:50 stretcher SMF link
i 1-5km
. isolator coupler
Master Oscillator > Py
Faraday
Mirror
RF-lock I >
by mixers

= Test done at accelerator environment (MIT Bates Laboratory)
= Locked EDFL to Bates master oscillator
= Transmitted pulses through 400 meters fiber link
= Close loop on fiber length feedback (12-fs in-loop jitter [0.1Hz,5kHz])
A. Winter et al., Paper FROA002, FEL 2005.

= Test done at the installed fiber underground (NIST/JILA)
= Transmitted pulse train via a 7-km fiber link between NIST and JILA
= 19-fs relative jitter between two locations [1 Hz, 46.5MHZ]
D. Hudson et al, OL 31, 1951 (2006).
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Optical-to-RF Synchronization

Converting optical pulse train to RF-signal at remote locations
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Direct Extraction of RF from Pulse Train

. Tr/n
Typical AM-to-PM:

1—-10 ps/mW

TR = 1/fR Consistent with NIST result t
Bartels et al, OL 30, 667 (2005).

BPF
K Photodiode

[ 4]

fr 2fr nfr (n+1 - nfr

Optical Pulse Train
(time domain) R

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).
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Optoelectronic Phase-Locked Loop (PLL)

Can we regenerate a high-power, low-jitter and drift-free RF-signal
whose phase is locked to the optical pulse train?

Optical input
(Reference) A A A Loop Filter VCO

Optical-RF | (R @ ................................................... .
Phase Detector |Phase error H Regenerated

output RF-Output

v

RF input

Implementation of optical-RF phase detectors
for high-power, low-jitter and drift-free RF-signal regeneration
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Sagnac-Loop for Electro-Optic Sampling

Phase
" Modulator
Pulse train input
TR = 1/frR
Output power
N No phase
modulation

A® = phase difference between counter
-propagating pulses in the Sagnac-loop -1
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Sagnac-Loop for Electro-Optic Sampling

_________ Freqdivided |- - - - C - _

Phase
> Modulator
Pulse train input
TR = 1/fR
Output power
N Synchronous
modulation

A® = phase difference between counter | >
-propagating pulses in the Sagnac-loop  ~TT T
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Sagnac-Loop for Electro-Optic Sampling

— fr/2 ~Nfr External
_________ Freq divided | - - - -2 - - - —————-
A ‘@' @ RF-source
with phase

Phase error fe
Modulator

Pulse train input

TR = 1/frR

I Output power When a phase error
Amplitude modulation % between pulses and

depth is proportional to RF-source exists.
the phase error.

Output

Oe

A® = phase difference between counter
-propagating pulses in the Sagnac-loop  -TT 0 T

I -
I I I 16 www.rle.mit.edu

AT



Sagnac-Loop for Electro-Optic Sampling

_________ Freq divided .__f_R‘Z____ _:'_fo{_@¢------
VCO

Phase
Modulator

»
»

Pulse train input

TR = 1/frR

Amplitude modulation
depth is proportional to ZS N O T J
the phase error. -

To read out amplitude modulation
depth in the baseband.
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Sagnac-Loop for Electro-Optic Sampling
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Demonstration Experiment

Optical-Microwave Phase Detector

Down-
conversion
Mixer

Loop

L
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« Capable of driving high-power VCO - High-power regenerated RF-signal
» Scalable phase detection sensitivity = Low-jitter synchronization

* Fiber-based “balanced” scheme

- Long-term drift-free operation
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In-Loop Phase Noise Measurement
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Residual timing jitter = 3 fs £ 0.2 fs (1Hz-10MHZz)

Long-term (>several hours) locking is possible.
Out-of-loop measurement is in progress.
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Optical-to-Optical Synchronization
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Balanced Optical Cross-Correlation
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Long-Term Locking Between Two Lasers
(Out-of-Loop Measurements)

100 fs

0.7 - H At

S 0.6 - mf\wﬂnﬂ/\ww IAP of SFG
= )

S 05-

o )

ﬁ 0.4 -

o

:

O

>12 hours long-term timing lock
0.2 1 (380 + 130 as jitter integrated
T from 0.02 mHz to 2.3 MHz)
) L,L-—-
0.0 T T T T T T T
0 10000 20000 30000 40000
Time (sec)

I v eeeeFle.mit.edu

AT



Timing Stabilization with Cross-Correlators
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Summary and Outlook

= Optical master oscillator: Ultrashort pulse trains from mode-locked
lasers have excellent phase/timing noise properties. (~10 fs 2 <1 fs)

= Timing-stabilized fiber links: initial demonstration in the accelerator
environment. Optical cross-correlation system in progress for low-jitter,
drift-free operation. (short-term ~10 fs = long-term <1 fs)

= Optical-to-RF synchronization: Balanced optical-RF phase detectors
are proposed for femtosecond and potentially sub-femtosecond optical-to-
RF synchronization. (~3 fs = long-term <1 fs)

= Optical-to-optical synchronization: Balanced optical cross-correlation.
Long term stable sub-femtosecond precision is already achieved. (<1 fs)

(Sub-)femtosecond timing synchronization and
stabilization for 4t generation light sources can be
accomplished.
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