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4th Generation Light Sources: XFEL

J. Kim et al., FEL 2004.
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Demands on Optical Timing Distribution

4-th Generation Light Sources demand increasingly precise timing 

today < 100 fs, in 3 years: < 10fs , in 6 years: < 1fs?

Scalability to these levels should be possible.

Must serve multiple locations separated by up to 1-5 km distances.

This is beyond what a direct RF-distribution (coaxial cables) can handle.
- thermal drifts of coaxial cables
- drifts of microwave mixers

It will lead to a considerable reduction in cost and space.
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Optical Master Oscillator
A master mode-locked laser producing a very stable pulse train
(can be locked to a microwave oscillator for long-term stability)
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Why Optical Pulses (Mode-locked Lasers)?

RF signal is encoded in the pulse repetition rate.
Every harmonic can be extracted.

Suppress Brillouin scattering and undesired reflections.
Optical cross-correlation can be used for timing stabilization.
Pulses can directly seed amplifiers.
Group delay is directly stabilized.
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Low-Jitter Mode-locked Lasers

Stretched-pulse Er-fiber laser
Tamura et al. OL 18, 1080 (1993)
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Schlager et al. OL 28, 2411 (2003).
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Phase Noise (Timing Jitter) Measurements

Noise floor limited by photo detection
Theoretical noise limit  <1 fs

Agilent Signal Analyzer 5052a @ 1GHz
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Kaertner et al, PAC 2005.
Winter et al, FEL 2005.
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Stabilized fiber links delivering the pulse train to multiple remote locations

Timing-Stabilized Fiber Links
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ultimately < 1 fs

Assuming no fiber length fluctuations faster than T=2nL/c.
L = 1 km, n = 1.5   =>  T=1 µs,    fmax ~ 100 kHz
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Short-term Stabilization using RF-mixers

RF-lock
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Test done at accelerator environment (MIT Bates Laboratory)
Locked EDFL to Bates master oscillator
Transmitted pulses through 400 meters fiber link
Close loop on fiber length feedback (12-fs in-loop jitter [0.1Hz,5kHz])

A. Winter et al., Paper FROA002, FEL 2005.

Test done at the installed fiber underground (NIST/JILA)
Transmitted pulse train via a 7-km fiber link between NIST and JILA
19-fs relative jitter between two locations [1 Hz, 46.5MHz]

D. Hudson et al, OL 31, 1951 (2006).
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Optical-to-RF Synchronization
Converting optical pulse train to RF-signal at remote locations
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Direct Extraction of RF from Pulse Train

Optical Pulse Train
(time domain)
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Typical AM-to-PM: 
1 – 10 ps/mW

Consistent with NIST result
Bartels et al, OL 30, 667 (2005).

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).
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Optoelectronic Phase-Locked Loop (PLL)

Implementation of optical-RF phase detectors
for high-power, low-jitter and drift-free RF-signal regeneration 

Can we regenerate a high-power, low-jitter and drift-free RF-signal 
whose phase is locked to the optical pulse train?  
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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To read out amplitude modulation
depth in the baseband. 

VCO

Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Demonstration Experiment

• Capable of driving high-power VCO  High-power regenerated RF-signal
• Scalable phase detection sensitivity  Low-jitter synchronization
• Fiber-based “balanced” scheme        Long-term drift-free operation 
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In-Loop Phase Noise Measurement

Residual timing jitter = 3 fs ± 0.2 fs (1Hz-10MHz)

Long-term (>several hours) locking is possible.
Out-of-loop measurement is in progress.
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Optical-to-Optical Synchronization
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Output
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(1/500nm = 1/833nm+1/1250nm). 

Loop Filter

PZT driver

T. Schibli et al, Opt. Lett. 28, 947 (2003).
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Jitter

Analysis
SFG
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Long-Term Locking Between Two Lasers
(Out-of-Loop Measurements)

ΔP of SFG

Δt
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Timing Stabilization with Cross-Correlators

Faraday
Mirror

ultimately < 1 fs

Currently working on a simplified 
and self-aligned cross-correlator

Long-term (> several hours)
stabilization will be possible.
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Summary and Outlook
Optical master oscillator: Ultrashort pulse trains from mode-locked 
lasers have excellent phase/timing noise properties. (~10 fs <1 fs)

Timing-stabilized fiber links: initial demonstration in the accelerator 
environment. Optical cross-correlation system in progress for low-jitter, 
drift-free operation. (short-term ~10 fs long-term <1 fs)

Optical-to-RF synchronization: Balanced optical-RF phase detectors 
are proposed for femtosecond and potentially sub-femtosecond optical-to-
RF synchronization. (~3 fs long-term <1 fs)

Optical-to-optical synchronization: Balanced optical cross-correlation. 
Long term stable sub-femtosecond precision is already achieved. (<1 fs)

(Sub-)femtosecond timing synchronization and 
stabilization for 4th generation light sources can be 

accomplished.
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