

Optical Design of the Energy Recovery Linac FEL at Peking University

Zhenchao Liu, Kexin Liu, Shengwen Quan

Institute of Heavy Ion Physics ,Peking University (IHIP,PKU)

Outline

- Description of PKU-ERL-FEL
- Design consideration
- Results of the optical design
- > Further work

Description of PKU-ERL-FEL

> Aims:

provide IR-FEL for users,
study ERL technology
Components:
DC-SC injector
Rossendorf Type linac (TESLA 9-cell cavity)
Undulator with mirrors
Beam transmission system

ERL-FEL of Peking University (PKU-ERL-FEL)

PKU-ERL-FEL parameters

Inject Energy	5MeV
Maximum Energy	30MeV
Bunch Frequency	26MHz
Bunch Charge	~60pC
Bunch length at Entrance of Undulator	~1ps
Macro Pulse Length	2ms
Rep. Frequency of Macro Pulse	10Hz
Energy Spread (rms)	0.24%
Transverse Emittance (rms, n.)	~3 µ m
Length of Undulator	1.5m
λ_{u} of Undulator	3cm
K of Undulator	0.5-1.4
Optical Cavity Length	11.52m
Wavelength of FEL	4.7-8.3 µ m

5.000

Representation of Construction

Undulator

Undulator will be manufactured in China.

IHIP, Peking University

II Design Consideration

- > Achromatic ($R_{16}=R_{26}=0$)
- > Isochronous ($R_{56}=0$)
- Small bending angle (15 degree)
- > Energy spread acceptance of undulator
- Small beta function in undulator
- Large energy spread acceptance in the second arc (7% at full width from the experience of JAREI and Jlab)

- Compensation of the second order matrix term
- > Trajectory length of the loop is variable
- > Space for installation of facilities
- > Space charge and CSR

Results of the optical design

Merger

- > Achromatic
- \blacktriangleright Adequate R_{56}
- Reduce the influence of space charge
- Fit the need of linac
- Good transmission for the return beam

Transverse beta function and emittance

Longitudinal beta function and emittance

Arc1

- > TBA arc, turning 180 degree
- > Isochronous
- > Achromatic
- > Compensation of T_{166} , T_{266} and T_{566}

Beta function and dispersion

Bunch Compression

- ➢ TBA arc, turning 180 degree
- \succ R₅₆ is variable
- > Achromatic
- Energy spread acceptance is 7% (full width)
- Lengthening the return bunch and making the whole loop isochronous

$$R_{56,arc2} = -(R_{56,chicane} + R_{56,other})$$

Compensation of T_{166} , T_{266} and T_{566}

Quad Sext

Beta function and dispersion

Further Work

- The parameters of the whole loop will be further optimized with other codes and compared with present results.
- Beam behavior in undulator will be simulated and the beta function within and after this part will be optimized

Thanks