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Introduction

• A number of ERLs are being designed and constructed around 
the world

• Including FELs place additional stringent requirements on the 
technical specifications of the accelerator systems

• Many of the requirements are crucial and difficult to achieve.  A 
non-comprehensive list: 
• Longitudinal phase space manipulation 
• Energy stability 
• Phase stability
• Transverse and longitudinal acceptance
• Magnetic field quality tolerance
• Wakefields and resistive wall instability management

• This talk will discuss the limits on these parameters and how they 
arise
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Longitudinal Matching Example
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Accelerate off crest with long bunch
Compress before wiggler
Decelerate off negative crest for 

energy recovery and energy 
spread compression
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Offset phase on return sets limit on energy spread

• FEL Interaction: beam central energy drops, beam energy spread grows
• Recirculator energy must be matched to beam central energy to maximize 

acceptance
• Beam rotated, curved, torqued to match shape of RF waveform
• Maximum energy can’t exceed peak deceleration available from linac!

(ΔE/E)FEL/2 < Elinac cos φ0
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Current Loading

The M56 between the end of our FEL and the linac is ~0.2m
Lasing at 2% efficiency the phase shift is 7.2 degrees of rf at 1500MHz

10 MV/m, +10o accel/decel
Effective 10 mA current sum = 0

Same but return delayed 7.2o

Effective current sum = 1.2 mA@  284o

The rf control module must handle this huge shift when the FEL turns on

<Iacc>

<Idecel>
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Rf phase vector diagrams

The M56 between the end of our FEL and the linac is ~0.2m
Lasing at 2% efficiency the phase shift is 7.2 degrees of rf at 1500MHz

10 MV/m, +10o accel/decel
Generator power phasor

Same but return delayed-7.2o

Instantaneous power phasor

High QL only makes 
this shift worse!

Same but return delayed-
7.2o, tuner minimizes 
power phasor
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RF Power as a function of current
RF power as a function of beam current cavity FEL3-4,

first pass -10d second pass +160d off crest, CW, tuners on
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Optical cavity must have its round trip travel time precisely matched to the 
arrival time of the electron bunches 

To keep the peak to peak fluctuations smaller than 10% it is necessary to 
keep the cavity length stable to less than 0.05GNλ.

Example: JLab IR Upgrade  

For G of 0.5,  N of 32, and λ at 1.5 µm.  One must keep the cavity length 
constant to <1.2 µm peak to peak.  Arrival time must be kept constant 
to the same precision:

From the frequency modulation constraint  you get a timing jitter 
constraint of     δτ < 6x10-9/fm

δω
ω

<
δL
L

<
1.2 ×10−6

32
= 3.8 ×10−8

Timing jitter requirements
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If you want to bunch a beam for high peak current 
you are limited by the longitudinal emittance and 
any non-linearities in the system.  

If you aren't careful the non-linearities can dominate 
the result.

Controlling non-linearities in the transport
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Component Quality

• This will make or break a machine!

• Magnetic field errors & ripple cause timing errors, 
energy spread, etc…

• Power supply stability, resolution, etc – couples to

– timing stability at FEL (in compaction managed 
transport systems)

– magnet reproducibility: hysteresis program! 

• Magnetic field quality

– Distorts not only transverse phase space, but also 
longitudinal
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• ΔB ⇒ δx’ = ΔBl/Bρ ∼ ΔBl/(33.3564 kg-m/GeV * Elinac)

• δl ⇒ ΔEdump = sin φ0 (2π Μ52(ΔBl/33.3564 kg-m)/λRF) (GeV)

• “Error field integral” ΔBl is independent of linac 
length/energy gain

– tolerable relative field error falls as energy (required field) 
goes up

• Numbers for 160 MeV Upgrade:

– ΔEdump ~ 3400 MeV * (ΔB/B)

– ΔEdump ~ 0.16 keV/g-cm * (ΔBl)

Field Quality Limitations to ERL Performance
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If you do it right then linac produces stable ultrashort pulses

We now 
regularly achieve 
300 fs FWHM 
electron pulses
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And so does the FEL:  FROG Analysis of JLAB FEL Pulses

• Laser: CW 1 kW

•Wavelength: 1.6 μm

• FWHM 215 fs

SHG FROG Traces

FROG error is 0.0015
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Wakefields
Ordinary vacuum crosses can turn into resonant chambers!  
Worse for ERL than SR because of short pulses

55ºC temperature on window with only 4.6 mA 
Estimate  20V/pC impedance at resonant frequency of 1450 MHz.

OOPS!
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Resistive wall heating in wiggler (11 mm chamber)

This can lead to enormous power deposition in the walls; the 
situation is much worse for ERLs than storage rings because of 
the shorter pulses! 

42ºC on the edge, 100º C in the middle with only 4.6 mA 
OOPS!
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Summary

ERLs offer exciting possibilities for extending light source 
performance  however these opportunities do not come without major 
challenges which push the limits of many technologies

The incorporation of FELs in ERLs adds to the list of issues which 
must be dealt with and tightens many specifications.  

The issues become more difficult with higher charge, longer systems, 
shorter pulses, and higher average currents but strategies exist to attack 
these problems. 
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The work discussed was performed by the FEL Team:

C. P. Behre, S. V. Benson, M. E. Bevins, G. Biallas, J. Boyce, 
W. Chronis, J. L. Coleman, L.A. Dillon-Townes, D. Douglas, 
H. F. Dylla, R. Evans, A. Grippo, D. Gruber, J. F. Gubeli, D. 
G. Hardy, C. Hernandez-Garcia, R. Hiatt, K. Jordan, 
L. Merminga, J. Mammosser, G. R. Neil, J. Preble, R. 
Rimmer, H. Rutt, M.D. Shinn, T. Siggins, H. Toyokawa, D. 
Waldman, R. Walker, G. Williams, N. Wilson, M. Wiseman, 
B. Yunn, and S. Zhang
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With the help of lots of others at JLab
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