

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

#### Precision Measurement of the Undulator K Parameter using Spontaneous Radiation

J. Welch, SLAC

Contributors: J. Arthur, R. Bionta, R. Dejus, P. Emma, J. Hastings, Z. Huang, H-D, Nuhn, P. Stefan, J. Welch, B. Yang

This work is supported by the U.S. Department of Energy, contract DE-AC02-76SF00515, and was performed under the auspices of the U.S. Department of Energy, by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, in support of the LCLS project at SLAC.

August 31,2006 FEL 2006



LCLS

Stanford Synchrotron Radiation Laboratory



#### Motivation

- Basic Scheme
- Theory of Two-Undulator Spectrum
- Details & Simulation
- Summary

August 31,2006 FEL 2006





## Motivation for in-situ K Measurements

- The LCLS Undulator consists of 33, essentially identical, independent undulator segments.
- Errors in segment K (= 0.934 B [T] λ [cm]), cause errors in the phase between the electron beam wiggle and the xray radiation.

Loss of microbunching and FEL gain.

- Tolerance of  $\Delta K/K \le 1.5 \times 10^{-4}$  is initially challenging, and must be maintained for years.
  - Temperature, alignment, radiation, presently unknown effects?... can easily change effective K.
- Direct in-situ magnetic measurements infeasible.



James Welch



## **2-Segment Scheme**

- Measure synchrotron radiation spectrum produced by two undulator segments, and scan K of one segment
  - Other schemes compare spectra from individual segments. (Pinhole technique, angle-integrated edge measurement, reference undulator)
- K's are matched when spectrum has the steepest slope on high energy side of 1st harmonic peak.
- Match segments pairwise until all segments are measured.



August 31,2006





## Theory of Two Segment Spectrum

Spectral intensity depends on relative detuning and phase difference

> Detuning parameters,  $v_{1,2}$ Phase difference,  $\phi$ Angle parameter,  $\xi$ Spectral intensity, *I* Includes angle energy correlation

$$egin{aligned} 
u_1 &= \pi N rac{\omega - \omega_1(0)}{\omega_1(0)} \ & \xi &= \pi N heta^2 rac{\omega}{2\omega_u} \ & \lambda_1 &= rac{\lambda_u}{2\gamma^2} ig( 1 + K^2/2 + \gamma^2 heta^2 ig) \end{aligned}$$

$$I(\nu_1, \nu_2, \xi, \phi) \propto \left| e^{i(\nu_1 + \xi)} \frac{\sin(\nu_1 + \xi)}{\nu_1 + \xi} + e^{-i(\nu_2 + \xi) - i\phi} \frac{\sin(\nu_2 + \xi)}{\nu_2 + \xi} \right|^2$$

August 31,2006 FEL 2006





# **Theory - Angle Integration**

- Two identical segments
- Most signal comes from first 7-8 µrad
- 20 µrad is max angle for 1st segment (chamber limit
- Maximum negative slope for K measurement doesn't depend on angle of integration much for angles ≈ 7-8 µrad or more.

Steepest (negative) slope



August 31,2006 FEL 2006





# Theory - Angle Integrated, 2 Detuned Segments

- Detuning segments produces slight slope/linewidth change
- 3% slope change for 0.1% K change
- Steepest negative slope will be used to track K.



August 31,2006 FEL 2006





# **Details and Simulation**

### Energy Jitter

- Alignment of Central Rays
- Phase difference
- Computer generated spectra plus noise
- Fitting details

August 31,2006 FEL 2006





## Details

- Beam energy jitter, 0.1% rms.
  - Detector is assumed to be narrow bandwidth ( << 1/N), high efficiency, Si crystal, Bragg diffraction</li>
  - Measure each pulse to 3x10<sup>-5</sup> and use to reconstruct the spectrum
  - Natural beam energy jitter is sufficient to sample region of steepest slope.
- Phase differences between segments
  - Shown to be neglible
- Alignment/Pointing errors
  - More than about 8  $\mu$ rad beam angle will scrape core SR on the vacuum chamber and distort the high energy edge of the measured spectrum.



Stanford Linear Accelerator Center

LCLS

Stanford Synchrotron Radiation Laboratory

## **Simulated Data**

- Theoretical angleintegrated spectrum was generated for 9 different K values
- "Data" points include effects of resolution and statistics



August 31,2006 FEL 2006





## **Detector and Noise**

Noise effects that add error to the number of detected photons or the frequency -->

| Charge meas res.     | 0.5%                    |
|----------------------|-------------------------|
| Energy jitter        | 0.1% rms                |
| Energy meas.<br>Res. | 0.003% rms              |
| E- angle jitter      | 0.5 µrad rms            |
| Detector noise       | 100 photons rms         |
| Peak signal          | 10 <sup>5</sup> photons |



James Welch Welch@SLAC.Stanford.edu

August 31,2006 FEL 2006



## **Simulation - Steepest Slope Determination**

- Steepest slope depends on K difference, but not on spectrum absolute shift
- Third order polynomial fit to truncated spectrum data easily yields steepest slope



$$N = N_0 + a(\Delta \omega / \omega) + b(\Delta \omega / \omega)^2 + c(\Delta \omega / \omega)^3$$
$$\left(\frac{dN}{(\Delta \omega / \omega)}\right)_{\text{max}} = a - \frac{b^2}{3c}$$

August 31,2006 FEL 2006



Stanford Linear Accelerator Center

LCLS

Stanford Synchrotron Radiation Laboratory

# Finding ∆K=0

- Scan K of one segment and find value that maximizes the steepest slope
- Neglecting small energy loss between segments, the extremum value is when the segment K values are identical.
- Simulation shows resolution of ΔK /K of 0.004% rms



August 31,2006 FEL 2006





# Summary

- Scanning K of one segment, keeping a second segment fixed, and fitting the measured spontaneous radiation spectrum, appears to be a useful method for determining the relative K values of nearby segments.
- Energy jitter is measured each pulse and used to reconstruct spectra
- Beam angle/energy correlations are dealt with through angle integration and alignment of central rays.
- Phase difference effects are expected to be neglible



August 31,2006 FEL 2006

Welch@SLAC.Stanford.edu

James Welch