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Undulator Segment Prototype
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LCLS Undulator Module Pole Canting

« Canting comes from wedged spacer %

* 4.5 mrad cant angle I

» Gap can be adjusted by lateral
displacement of wedges

e 1 mm shift means 4.5 um in gap, or
8.2G

* B4 can be adjusted to desired value

LCLS UNDULATOR CROSS SECTION WITH THE WEDGED SHIMS
(angle a is exaggerated)
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Undulator Roll-Away and K Adjustment Function

Pole Center Line

Vacuum Chamber

First; K=3.5000; Ax=-4.0 mm Neutral; K=3.4881; Ax= 0.0 mm

Horizontal Slide
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Roll-Away; K=0.0000; Ax=+80.0 mm
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Requirements for Optimum SASE Gain

E Overlap control

m Electron beam and x-ray field need to overlap so that the separation of
their centers stays below 7.4 um (rms)

m Requires straight line trajectory for electron beam to stay with the
radiation field

E Phase control (Phase Shake)

B Phase between electrons and electric field needs to be controlled to
+10° of optical wavelength, which is (4.2 pm at 1.5 A)
Will be done through

= Undulator field tuning
= Beam Steering [Requiring straight line to 2 pm (rms)]

E Undulator K Control (Average Phase)

m Will be done through
= Undulator field tuning
= Keeping electron beam close to undulator axis
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Focus of the Alignment Task

E Quadrupoles
m Misalignment will steer beam
m Necessary to align quadrupoles with respect to a straight line
m Position control requirement : < 1 um
B Requires Beam Based Alignment

E Undulators Segments
m Misalignment will change K
m Tolerances: 80 um (rms) vertical; 140 um (rms) horizontal
m No effect on steering ! => Difficult to detect.
m Addressed by common girder alignment of fiducialized components
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Solution for Quadrupole Alignment Requirement

F Mount quadrupoles on remote controlled supports (cam-shatft
movers) and use their off-axis fields for steering.

I Use Beam-Based Alignment (BBA) with beam energy
variation (4.3 GeV - 6.2 GeV - 13.6 GeV)
to detect and cancel error fields along the undulator line, i.e.,
remove dispersion, by
m Detecting energy dependence of the trajectory using RF Cavity BPMs
m Moving the quadrupoles transversely to minimize the effect

E Net result: the quadrupoles will get aligned in the process
m Algorithm has been found to work in simulations
m We believe BBA to be essential for achieving X-Ray FEL gain
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Solution for Segment Alignment Requirement

E Install beam position sensing elements with absolute readout capability at
either end of each segment

E Choice for down stream location : Quadrupole
E Choice for up stream location : Beam Finder Wire (BFW)

B All three components (BFW, Segment, Quadrupole) will be fiducialized,
l.e., their magnetic axes will be measured with respect to their tooling
balls.

E They will be mounted on a common girder structure and aligned on a
Coordinate Measuring Machine (CMM) with micron level accuracy

B Girders will be moved during BBA to correct the quadrupole positions to
achieve the required kick (mostly removal of initial kick), at the same time
aligning the down stream end of the undulator segment

B The other girder end will then be moved to bring the wires of the BFW in
collision with the beam, to align the upstream (“loose”) end
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Fixed Supports
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Beam Finder Wire (BFW)

A misaligned undulator will not steer the beam. It
will just radiate at the wrong wavelength.

The BFW allows the misalignment to be detected.
(also allows beam size measurements)

BFW

BFW Undulator Quad

Of I -----
[ [ |
L Girder

Replacement

\é%gl#ljggr ' C Beam Direction

Planned Applications
E Loose End Alignment
E Beam Profile Scanning
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Alignment Tolerances

Electron Beam Requirements Value | Unit
Electron Beam Straightness (rms) 2 | um
Launch position radius (rms) 7.3 | pm
Launch angle radius (rms) 0.26 | prad
Component Monitoring and Control Tolerance Value | Unit
Horizontal / vertical quadrupole and BPM position stability 2 | um
Expected ground motion amplitude 1 | um/day
Tolerances for Girder Alignment in Tunnel Value | Unit
Initial rms uncorrelated x/y quadrupole alignment tolerance wrt straight line 100 | pm
Undulator Segment yaw / pitch tolerances (rms) 240/80 | prad

Tolerances for Component Alignment on Girder

Horizontal alignment of quadrupole and BPM to Segment (rms)

Vertical alignment of quadrupole and BPM to Segment (rms)

Horizontal alignment of BFW to Segment (rms)
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Vertical alignment of BFW to Segment (rms)
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Summary of Alignment Controls

F Manually Adjustable Controls:
m Cam shafts relative to fixed support:
X [12 mm range]; y [25 mm range]; z [12 mm range]
m Quadrupole, BFW, BPM, and vacuum chamber relative to segment:
X, Y, and z [range >1 mm]

F Remotely Adjustable Controls:

m Girder x, vy, pitch, yaw, roll [£1.5 mm in x and y on either side]
= Enables alignment of all beamline components to the beam axis.
= Roll control is to be used to compensate roll errors

m Undulator x position [ 80 mm range]
= Provides control of the undulator field at beam location.

= Horizontal slide stages move each undulator segment independently of
girder and vacuum chamber.
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Summary of Alignment Monitors

E Hydrostatic Leveling System (HLS)

m Monitored Degrees of Freedom are: y, pitch, and roll
E  Wire Position Monitoring System (WPM)

m Monitored Degrees of Freedom are: X, (y), (pitch), yaw, and roll
E Temperature Sensors

m In support of ADS readout corrections, undulator K corrections, and
component motion interpretation.

B Beam Position Monitors®
B Monitored quantities are: x and y position of electron beam

B Quadrupoles®
B Monitored quantities are: electron beam x and y offset from quad center

“Transverse Locations Tracked by ADS

~ ADS
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Alignment Diagnostic System (ADS)

Wire Position Monitor system (WPM)

<—280
» Resolution <100 nmin X & Y direction | Position
* Instrument Drift <100 nm per day V. o> % Monitor Wirel
« Moving Range 1.5 mmin X & Y direction ' A
 Availability Permanent, no interrupts |

o
<
N
H Wire2

X and Y, can be measured @ OC)
Roll, Jaw & Pitch can be calculated.

Hydrostatic Leveling System (HLS)

Sensi
b . Capacitive Sensor
Electrode _ ;Z[zm C p

e Precision <1pm T
D, « Instrument Drift ~1-2 um / month HLS 4 His3

- ~ Yo
Y HLSlD (,1 HLSZD Roll
‘ Ultrasound Sensor 2

* Precision <0.1 um Pitch
e Instrument Drift potentially no drift e

Beam

Y can be measured
Roll & Pitch can be calculated.

« Availability 10 min settling time after motion
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WPM Resolution Test at SLAC Sector 10

-One Micrometer

Wire Motion Air Temperature

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 Hours

Wire to wall motion correlates with air temperature cycle
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Controlling Girder Motion

F  Girder motion will be caused by
m Ground Motion
m Temperature Changes
m CAM Rotation
F  Girder motion will be monitored in 2 ways:

1. Directly, through the ADS

2. Indirectly, through impact on electron beam trajectory
(as detected by BPMSs)

I  Girder Positions will be frequently corrected using the cam
movers.

Heinz-Dieter Nuhn, SLAC / LCLS
nuhn@slac.stanford.edu
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Alignment Tasks Scheduling Diagram

M M F U nd u |at0r Ha” USE OF DIAGNOSTICS COMPONENTS
Segment Tuning and Fiducialization Supports Installation and Alighment
v A 4
Quadrupole Fiducialization » Girder Installation and Pre- Alignment
A 4 v
BFW Fiducialization Environmental Field Measurement
v v .
Component Alignment on Girder [CMM] ADS Installation
v

Store Segments Separate from Girder

A 4

e ~ ~ ~ » Undulator Segment Installation
1 A 4
: Girder Alignment using ADS < g
! 4 S [ I
! Electron Beam-Based Alighment i %
h 4 N
Segment Tuning . T1 |
Loose End-Alignment T BFWSs BPMs Quads
g : 1 2
: Continuous Position Correction 9,:
v T
1
' Every 2 — 4 weeks: Invasive Correction —
1 v
B TP Once per month: Swap 3 Segments
A 4
Once every 6 month: Center cam ranges
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Conclusions

E The X-ray-FEL puts very tight tolerances on magnetic field quality,
electron beam straightness, and segment alignment

B These tolerances can be achieved through Beam Based Alignment based
on BPMs and guadrupoles (by scanning beam energy)

F BPMs, quadrupoles, and undulator segments will be kept aligned relative
to each other in the presence of ground motion through common girder
mounting.

E Main tasks of the conventional alignment are

m Component fiducialization and alignment on girders
m Conventional alignment of girders in the Undulator Hall as prerequisite for BBA

E The Alignment Diagnostic System measures and enables the correction of
girder movement due to ground motion and temperature changes

B A strategy is in place to establish and maintain the straight electron beam
trajectory required to achieve FEL gain at x-ray wavelengths

Alignment Strategy — August 31, 2006 Heinz-Dieter Nuhn, SLAC / LCLS

FEL 2006 — THBAO2 nuhn@slac.stanford.edu



Stanford Linear Accelerator Center

;l
(¢

in
C
€

Stanford Synchrotron Radiation Laboratory

Thank you
for your attention

Alignment Strategy — August 31, 2006 Heinz-Dieter Nuhn, SLAC / LCLS
FEL 2006 — THBAO2 nuhn@slac.stanford.edu




	Electron Beam Alignment Strategy in the LCLS Undulators�Heinz-Dieter Nuhn, SLAC / LCLS���August 31, 2006
	Undulator Segment Prototype
	LCLS Undulator Module Pole Canting
	Undulator Roll-Away and K Adjustment Function
	Requirements for Optimum SASE Gain
	Focus of the Alignment Task
	Solution for Quadrupole Alignment Requirement
	Solution for Segment Alignment Requirement
	Beam Finder Wire (BFW)
	Alignment Tolerances
	Summary of Alignment Controls
	Summary of Alignment Monitors
	Alignment Diagnostic System (ADS)
	Controlling Girder Motion
	Alignment Tasks Scheduling Diagram
	Conclusions

