

THE USE OF HHG AT 4GLS

Brian McNeil, Department of Physics, University of Strathclyde, UK

David Dunning & Neil Thompson CCLRC Daresbury Laboratory, UK

Brian Sheehy, Sheehy Scientific Consulting

August 27 – September 1, 2006 Berlin and Dresden, Germany

fel 06

BERLIN

Outline

- Brief look at conceptual design of 4GLS XUV-FEL
- Benefits of amplifier seeding
- 4GLS HHG conceptual design seeding scheme
- Modelling HHG seeding
- Simulations of XUV-FEL conceptual design
- Further design work for XUV-FEL

Conceptual Design of 4GLS XUV-FEL

XUV-FEL layout

XUV-FEL parameter summary

General	
FEL design	High Gain Amplifier
Seeding mechanism	HHG source
Photon output	
Tuning Range	~ 8 - 100 eV
Peak Power	~ 8 - 2 GW
Repetition rate	$\sim 1 \; \mathrm{kHz}$
Polarisation	Variable elliptical
Min Pulse length FWHM	< 50 fs
Typical $\Delta f \Delta t$	~ 0.6
Max pulse energy	$400 \ \mu J$
Electron beam parameters	
Energy	750 - 950 MeV
Bunch Charge	1 nC
RMS bunch length	266 fs
Normalised emittance	2π mm mrad
RMS energy spread	0.1%
Undulator parameters	
Undulator Type	PPM & APPLE-II
No of Modules	8&5
Module lengths	$\sim 2~{ m m}$
Period	45 mm & 51 mm
Focusing	FODO
Minimum magnetic gap	$\sim 10~\mathrm{mm}$

XUV FEL Undulator Tuning: Variable Polarisation Options

OPTION 1: baseline design

10-100eV

- 10mm min gap
- W1 planar 45mm period
- W2 APPLE II 51mm period

"Gaps" are undulator gaps

 \Rightarrow Vacuum gaps will be

~ undulator gaps – 3mm

• OPTION 2: extension to 6eV

- **# 6-100eV**
- 🏶 8mm min gap
- W1 planar 45mm period
- W2 APPLE II 53mm period

OPTION 3: extension to 6eV

6-100eV

- 10mm min gap
- W1 planar 45mm period
- W2 APPLE II 57mm period

Baseline Option 1*

BWJ McNeil, NR Thompson & B Sheehy, These proceedings - MOPPH012

SS Simulations 10-100eV

SS Simulations 10-100eV

Benefits of amplifier seeding

- Improvement in the temporal coherence (and hence spectral brightness)
- Shot-to-shot reproducability (same shape)
- Shot-to-shot stability (same power)
- Shorter pulses not determined electron pulse
- Shorter interaction length (& cost)
- Amplify exotic pulses for post-amplification manipulation
- Seed may be used as source in its own right
- Requires spatio-temporal synchronisation with electrons

4GLS HHG conceptual design seeding scheme

Tapered vacuum vessel

HHG Seed Generation

Good introductory source material at:

Henry C. Kapteyn et al., "EUV 'Photonics' of High-Harmonic Generation and Applications "

ICFA Beam Dynamics Mini Workshop (Future Light Source Working Group) Workshop on the Physics of Seeded Free Electron Lasers

MIT, 17-19 June 2004 (http://mitbates.mit.edu/xfel/conference.htm)

and:

John W.G. Tisch, "Alternative Coherent X-ray Sources", STI Round-Table Meeting DESY, Hamburg 22-24 June 2004 (xfel.desy.de/content/e154/upload/upload_file/Meetings/STI_June04/Tisch.pdf)

HHG Energy Spectrum*

*Eiji J. Takahashi et al., IEEE Journal of Selected Topics in Quantum Electronics, **10**, 1315 (2004)

HHG Energy Spectrum*

*Y. Mairesse et al., Science **302**, 1540 (2003)

HHG temporal structure

Temporal structure contains a series of atto-second spikes separated by ½ of the drive laser period

4GLS layout

Seed laser room

HHG seed for XUV-FEL

See: B. Sheehy et al., this conference: MOPPH067

*For 30 fs FWHM – The peak powers used for XUV simulations

Modelling HHG seeding

Seeding options

1) Un-filtered ?

2) Filtered ?

Un-filtered expectations

Time (as)

 $4\pi\rho$ $4\pi\rho n$

Not so important if 1) applies as need only consider one resonant harmonic => no short pulse structure

Can neglect all non-resonant harmonics? - Yes

^{*}Eiji J. Takahashi et al., IEEE Journal of Selected Topics in Quantum Electronics, **10**, 1315 (2004)

Simulated electric field

P. Antoine et al., Phys. Rev. A 56, 4960 (1997)

Simulated power

Simulated field detail

=> Freq. range that e.g. Genesis can simulate properly without aliasing is:

Simulated spectrum

=> Freq. range that e.g. Genesis can simulate properly without aliasing is:

Reality check

Genesis simulation

HHG seed field at entrance to FEL

XUV-FEL parameters but with uniform current I=1.5 kA

Genesis simulation

HHG seeded field at z~16 m

Genesis simulation

HHG seeded field at saturation z~32 m

Simulations of XUV-FEL conceptual design XUV lasing - Pulses @ 100eV

Planar undulator start PU1

VU5 VU4 VU3 VU2 VU1 PU8 PU7 PU6 PU5 PU4 PU3 PU2 PU1

Planar undulator end PU8

Simulations of XUV-FEL conceptual design XUV lasing - Pulses @ 10eV

Helical undulator start VU1

- "Further design" Technical Design Report ~end 2007
- Keep up-to-date with HHG development rapidly changing
- Synchronism issues are critical*: keep timing offsets < 100 fs
- Need to simulate with more realistic electron pulses s2e
- Re-assess and optimise design

*D. Dunning et al., First Tolerance Studies for the 4GLS FELSources, TUPPH057