

Optical Klystron Enhancement to SASE FELs

Y. Ding, P. Emma, <u>Z. Huang</u> (SLAC)

V. Kumar (ANL&RRCAT)

August 28, 2006

Introduction

Optical Klystron (OK) proposed by Vinokurov and Skrinsky, successfully applied in many FEL oscillators

High-Gain Lasing and Polarization Switch with a Distributed Optical-Klystron Free-Electron Laser

Phase matching

High-gain OK studies

1-D steady-state theory R. Bonifacio et al., PRA 1992.

. .

- N. Vinokurov, NIMA 1996.
- K.-J. Kim, NIMA 1998.

Neil & Freund (NIMA, 2001), 3D seeded simulation for LCLS at 1.5 Å

Fig. 3. Variation of the performance with B_0 .

X-ray OK is extremely sensitive to chicane B field
at 1×10⁻⁴ level (0.2 Gauss for every OK)

Same sensitive to energy jitters

We find that SASE OK is not sensitive to phase matching Y. Ding et al., PRST-AB 9, 070702, 2006

SASE OK theory We generalize Kim's 1-D OK theory to SASE

Phase matching

-----Overall phase shift unimportant in SASE

Optimal OK R_{56} is when $kR_{56}\sigma_{\delta}\sim 1$

Chicane delays e-beam by

$$rac{R_{56}}{2}\simrac{\lambda}{4\pi\sigma_{\delta}}\ggrac{\lambda}{4\pi
ho}$$
 when $\sigma_{\delta}\ll
ho$

No need for phase matching after shifting a few spikes

Slice Energy spread

- Simulations and TTF experiments show slice energy spread from rf guns at 3 or 4 keV level
- 3 keV (rms), accelerated to 14 GeV, & compressed × 32 → σ_{δ} ~ 1×10⁻⁵ << LCLS ρ ~ 5× 10⁻⁴
- Microbunching instability due to compression amplifies unwanted modulations → increase σ_{δ} beyond 1×10⁻⁴
- To suppress instability, a laser heater in LCLS will increase E-spread to 40 keV and control σ_{δ} at undulator to 1×10⁻⁴

For OK enhancement, run laser heater at 20 keV and control σ_{δ} at undulator to 5×10⁻⁵

Energy spread in undulator

Energy spread increase due to quantum diffusion of spontaneous radiation (Saldin et al. NIMA 1996)

$$d < \Delta \gamma^{2} > = \frac{14}{15} \frac{\lambda_{c}}{2\pi} r_{e} \gamma^{4} k_{u} K^{2} F(K) L_{u}$$

$$F(K) = 0.6 K (L C L S)$$

at $\lambda = 1.5$ Å

Lower K and γ reduce E-spread diffusion

Small increase of saturation length (a few %) from K=3.5 to K=2.7

OK enhancement to LCLS

In all our GENESIS simulations,

- spontaneous energy spread diffusion is included;
- Insert OKs in the undulator long breaks (~1m space) every three undulator sections (about 12 m)

 λ =1.5 Å, *K*=3.5, *E*=13.6 GeV (nominal design) λ =1.0 Å, *K*=2.7, *E*=13.5 GeV

Undulator entrance relative energy spread (σ_{δ})

1 × 10 ⁻⁵	Smallest possible
5×10-5	Needed for OK
1×10 ⁻⁴	Baseline SASE

LCLS λ=1.0 Å, K=2.7, E=13.5 GeV

Open up undulator gap from 6 mm to ~8 mm, K drops to 2.7

Output power not sensitive to ±20% R₅₆ variation

A compact x-ray FEL

- SCSS-type undulator, λ_u =1.5 cm, K =1.3, need only E = 5 GeV for λ =1.5 Å
- Assume 100 keV local energy spread after compressing the bunch to 2 kA is allowed by instability, ε_n = 1μm
- Small energy spread diffusion in undulator

Summary

In contrast to a seeded FEL, SASE OK gain is not sensitive to phase mismatch due to chicane field errors / energy jitters

Slice energy spread is a crucial parameter for OK gain,
E-spread diffusion in undulator depends strongly on *E* and *K*

With a controllable energy spread by laser heater, 4 OKs significantly enhance LCLS gain and lead to earlier saturation

These OKs may help LCLS reaches 1.0 Å with a smaller K

May be useful to boost a compact x-ray FEL based on a modest beam energy and a short-period undulator