

Status & Challenges for LCLS

David H. Dowell Stanford Linear Accelerator Center (on Behalf of the LCLS Team)

Free Electron Laser Conference Berlin, Germany August 2006

Status of LCLS Construction

- Overview of the Challenges
- Schedule
- Summary

Stanford Synchrotron Radiation Laboratory

The LCLS will use the last 1/3 of the SLAC linac to create an x-ray FEL

2006 FEL Conference LCLS Status & Challenges

LCLS Design Parameters

Fundamental FEL Wavelength	1.5	15	Å
Electron Beam Energy	13.6	4.3	GeV
Normalized Slice Emittance (rms)	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Energy Spread (slice rms)	0.01	0.03	%
Bunch/Pulse Length (FWHM)	≤ 200	≤ 200	fs
Saturation Length	87	25	т
FEL Fundamental Power @ Saturation	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
* photons/sec/mm²/mrad²/ 0.1%-BW			

Stanford Synchrotron Radiation Laboratory

Injector and Bunch Compressor 1 Installation is in Progress at Sectors 20 and 21

Stanford Synchrotron Radiation Laboratory

BC1 Chicane Support and Translation Stage

2006 FEL Conference LCLS Status & Challenges

Injector Quadrupoles

David H. Dowell dowell@slac.stanford.edu

Stanford Linear Accelerat

Gun-Spectrometer Quadrupole

Injector Solenoid #2

Cathode Drive Laser Operating at Sector 20

2006 FEL Conference LCLS Status & Challenges

Drive Laser Installed &

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

2006 FEL Conference LCLS Status & Challenges

9

Stanford Synchrotron Radiation Laboratory

RF Gun Fabrication and Cold RF Testing Finished & Preparing for High-Power Tests

2006 FEL Conference LCLS Status & Challenges

Klystron Gallery at S20 Looking Toward the Undulator and End Stations

Stanford Synchrotron Radiation Laboratory

Single Undulator Test (SUT) at ANL

Stanford Synchrotron Radiation Laboratory

New Magnetic Measurements Facility (MMF)

2006 FEL Conference LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

Undulators being shimmed at the MMF

Stanford Synchrotron Radiation Laboratory

LCLS Site Plan

2006 FEL Conference LCLS Status & Challenges

15

Stanford Synchrotron Radiation Laboratory

View of the Research Yard, Looking back toward the Linac

2006 FEL Conference LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

Construction has begun in the SLAC Research Yard with removal of the Final Focus Test Beam (FFTB)

2006 FEL Conference LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

View east toward the experimental halls

Technical Challenges for Angstrom FEL's

- Gun emittance
 - Cathode emittance, uniformity, and quantum efficiency
 - RF field quality
 - gun solenoid field uniformity and alignment
- Drive laser reliability, stability and 3D shaping (UV diagnostics)
- Emittance preservation
 - Optical aberrations and CSR
 - Wakefields
- Beam Instabilities (CSR, Longitudinal space charge)
 - Laser-Heater
- Bunch length diagnostics and control
- Alignment
 - gun to solenoid etc.
 - undulator
- Magnetic Measurements
 - Beamline components
 - New measurement facility for undulators
- RF power stability
- Vibrations
- Temperature stability and control

2006 FEL Conference

dowell@slac.stanford.edu

Center

Thales Drive Laser System for LCLS

Stanford Synchrotron Radiation Laboratory

3D RF Design of Gun

- Z-coupling:
 - reduces pulsed heating
 - increases vacuum pumping
- Racetrack to minimize quadrupole fields
- Deformation tuning to eliminate rf tuners
- Iris reshaped reducing field 10% below cathode
- Increase 0-pi mode separation to 15MHz
 - All 3D features included in modeling:
 - laser port and pickup probes
 - 3D fields used in Parmela simulation

RF Parameters	
f0 (GHz)	2.855987
Q0	13960
β	2.1
Mode Sep. ⊿f (MHz)	15
E0:E1	0.999:1

- C. Limborg et al., "RF Design of the LCLS Gun", LCLS-TN-05-3
- L. Xiao et al., "Dual feed rf gun design for the LCLS," Proc. 2005 Particle Acc. Conf.

Compliments of Z. Li & L. Xiao

Stanford Synchrotron Radiation Laboratory

Cathode Qualification System (CQS)

AFM measurement of cathode surface

29.898

Compliments B. Kirby

2006 FEL Conference LCLS Status & Challenges

David H. Dowell dowell@slac.stanford.edu

v: 50 microns

39.864

65.9 57.4

48.9

40.5 32.0 23.5

49.831

Stanford Synchrotron Radiation Laboratory Magnetic Measurements and Calibrations are being performed on <u>all</u> beamline magnets

Gun Solenoid on Magnetic Meas. Test Stand

2006 FEL Conference

LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

Injector Diagnostics Are Essential

2006 FEL Conference

Slice-Emittance Measurement Simulation

2006 FEL Conference

LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

Alignment and Measurement of Everything is Important: Straightness of Injector Linac Section

Nearly straightened already (Aug. 21, '06)

Coordinate measurement machine measurement of s-band linac showed a significant bow

2006 FEL Conference LCLS Status & Challenges

Vibration Tolerances have been Determined for all Beamline Components, Especially Solenoids & Quadrupoles

Magnet	Δx_i , sensitivity	Δy_i , sensitivity	σ_i , rms tolerance	
Name	[<i>µ</i> m]	[<i>µ</i> an]	[<i>µ</i> an]	
S1	1.2	1.2	0.10	
S2	2.615	2.850	0.50	
QA01	2.615	2.850	0.10	•
QA02	1.864	3.338	0.10	
QE01	25.023	21.28	0.50	
QE02	12.427	9.899	0.50	
QE03	2.493	4.259	0.10	
QE04	3.918	4.203	0.10	
QM01	1.615	1.652	0.10	
QM02	6.088	1.007	0.10	
LCLS Phys	ics Rea. Do	oc. 1.1-008.	P. Emma	
OMU4	1.244	5.128	0.10	
OA11	7.854	4 228	0.10	
T				
A.				
John-		1	1	

Vibration measurements performed on similar gun and solenoid for E-163 Experiment

David H. Dowell

dowell@slac.stanford.edu

Stanford

Accelerate

Linear

Center

Undulator Support System

Fixed Pedestal

Designed to be very stable in temperature due to concerns of thermal expansion shifting the quadrupoles

- Insulated
- Filled with sand
- Note: Hall temperature stabilized to +/- 1 deg F

slide compliments S. Milton, ANL

2006 FEL Conference LCLS Status & Challenges

Stanford Synchrotron Radiation Laboratory

In-Situ Measurement of Undulator K using Angle-Integrated Spontaneous Spectra for 2 Undulators

- Insert 2 ~adjacent undulators.
- Measure e^- energy per pulse.
- $(\Delta \omega / \omega)_{\rm rms} \approx 0.2\%$, measured to 0.006% resolution.
- Use Si crystal on 111-axis to meas. angle-integrated highenergy spectrum edge.
- Scan undulator x-position ($\Delta K/K$ = -0.2 to +0.2%).

See talk by J. Welch, Session 8, Thursday

2006 FEL Conference LCLS Status & Challenges

David H. Dowell dowell@slac.stanford.edu

29

Stanford Synchrotron Radiation Laboratory

Design of Region Between the Undulators

Undulator RF Beam Position Monitor

2006 FEL Conference LCLS Status & Challenges

31

Stanford Synchrotron Radiation Laboratory

LCLS Installation and Commissioning Time-Line

Summary

LCLS construction has begun:

- Laser building at Sector 20 finished
- Drive laser delivered, installed & operating
- RF gun fabricated and high-power testing in Sept.
- Beamline through BC1 installation begun
- Final Focus Test Beam (FFTB) removed for LCLS construction
- Undulators arriving from ANL and being magnetically shimmed in new Magnetic Measurement Facility (MMF)
- LCLS design addresses many of the varied technical challenges of Angstrom FELs
- Commissioning of Injector through BC1 to begin in early 2007
- On schedule for first light in 2008 and beam for users in 2009.

