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Abstract 
Metal cathodes installed in rf guns typically exhibit 

much lower quantum efficiency than the theoretical limit.  
Experimenters often use some sort of in situ technique to 
“clean” the cathode to improve the QE.  The most 
common technique is laser cleaning where the laser is 
focused to a small spot and scanned across the cathode 
surface.  However, since the laser is operated near the 
damage threshold, it can also damage the cathode and 
increase the dark current.  The QE also degrades over 
days and must be cleaned regularly.  We are searching for 
a more robust cleaning technique that cleans the entire 
cathode surface simultaneously.  In this paper we describe 
initial results using multiple techniques such as keV ion 
beams, glow discharge cleaning and back bombarding 
electrons.  Results are quantified in terms of the change in 
QE and dark current. 

INTRODUCTION 
The LCLS RF gun requires fields up to 120 MV/m to 

achieve the desired emittance of 1 μm with 1 nC of charge 
in a 10 ps bunch.  The high field requires the use of a Cu 
cathode to avoid breakdown at the cathode joint.  The 
LCLS laser can produce 250 μJ of energy at 255 nm 
which will require a QE of 2 10-5 to generate 1 nC of 
charge.  In the case of the Gun Test Facility (GTF) drive 
laser operating at 263 nm, the theoretical QE for a clean 
Cu surface using a 263 nm photon is 33 10-5 with a 100 
MV/m rf field and 8.4 10-5 with no applied field [1].  
However, experience with multiple cathodes at the GTF 
indicate the QE of Cu can vary from as low as 10-6 to 
nearly 10-4 at 100 MV/m.  In addition the QE is not 
constant over the laser spot leading to increased emittance 
from the non-uniform space charge forces.   

Our experience with laser cleaning [1] has convinced us 
to search for a better technique that cleans the entire 
surface simultaneously, does not increase the dark current 
and is easily repeatable.  Here we report QE and dark 
current measurements before and after using multiple 
techniques intended to clean the metal surface and 
increase the QE. 

IN-SITU TECHNIQUES AND RESULTS 
One of the simplest proposed cleaning methods is to 

heat the entire gun and drive off any surface contaminants 
with thermal energy.  This was motivated by a test where 
a small Cu sample was heated in a vacuum chamber to 
230 C for 100 minutes which increased the QE over 2 
orders of magnitude [2].  All four Cu cathodes installed at 
the GTF have been baked after installation to 200 C for 
several days, resulting in measured QEs that range from 
10-6 to nearly 10-4 at 60 MV/m.   

Ion Beam Cleaning 
Previously we reported QE measurements on Cu 

samples before and after exposing the sample to a few 
keV ion beam [3].  The measured QE as a function of 
illumination wavelength with no applied field agreed very 
well with the theoretical Cu QE [4] after dosing the 
sample with up to 10 mC of charge.  X-ray photoelectron 
spectroscopy (XPS) measurements showed the primary 
contaminant was carbon. 

This ion gun could not be installed on the GTF gun due 
to interference with the gun solenoid.  The SLAC 
Accelerator Research Department B (ARDB) rf gun is 
nearly identical to the GTF gun but with more clearance 
between the gun and solenoid.  Thus the ion gun, model 
number ZMB7C from Micro Photonics Inc., was installed 
on the ARDB rf gun.  The two rf guns have 
interchangeable cathode plates but the lasers operate at 
slightly different wavelength.  The ARDB drive laser 
wavelength is 266 nm and the GTF wavelength is 263 nm.  

  The ion gun was installed on one of the two laser ports 
in the half cell as shown in Figure 1.  The beam has a 
direct line of site to the cathode through an oval opening 
in the cavity side wall measuring 0.433” X 0.25” with 
approximately a 70° angle of incidence at the cathode.  
The beam size at the cathode is approximately 1 cm in 
diameter. 
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Figure 1: Layout of the ion gun and rf gun.  The gun is 
installed on a laser port with a direct line of site to the 
cathode. 

The QE was measured prior to the ion gun installation 
and was only 0.4 10-5 at 60 MV/m.  The rf gun was vented 
using LN2 tank boil-off and the ion gun installed.  Before 
the ion gun was operated the QE was re-measured and 
found to have increased nearly an order of magnitude to 3 
10-5.  The ion gun was then operated for 40 minutes at 2 
keV and 2μA for a total integrated charge on the cathode 
of nearly 5 mC.  After pumping out the hydrogen the QE 
was measured and found increased to 6 10-5 with no 

rf gun  
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increase in the dark current.  The ion gun was operated for 
a second time for 2 hours at 4 μA for a total dose of 29 
mC but the QE decreased back to 3 10-5.  An additional 7 
mC dose (1 hour at 2 μA) did not change the QE.  The 
dark current was not affected by the hydrogen ion beam. 

Although the QE increased initially after the first 
hydrogen ion beam cleaning, the subsequent QE was 
unchanged at 3 10-5 at MV/m.  This is significantly lower 
than the 10 10-5 measured on the Cu samples at the same 
wavelength with no applied field [3].  The most 
interesting result was the substantial increase in QE after 
the gun was vented.  This was also observed at the GTF 
and will be discussed in the next section. 

The hydrogen was replaced with Argon and the ion gun 
operated for 30 minutes at 2-2.5 keV between 1.5-3 μA 
for a total dose of 3 mC.   The dark current was measured 
but the rf system failed before the QE could be measured.  
The total integrated dark current more than doubled from 
1.6 nC prior to the Argon cleaning to 3.4 nC after cleaning 
with a peak field of 105 MV/m.  The peak dark current in 
the macropulse went from 1.1 mA to 2.6 mA.   

The poor results compared to the test samples may 
partially be explained due to misalignment of the ion gun 
and thus limited cleaning at the center of the cathode.  The 
70° angle of incidence of the ion beam relative to the rf 
gun cathode is 33° larger than tested on the Cu samples 
which may limit the effectiveness of the ion beam 
cleaning.  It is also theorized that contaminants removed 
from other areas exposed to the ion beam migrate to the 
cathode instead of getting pumped out of the gun.   

Glow Discharge Cleaning 
Glow discharges are commonly used to clean vacuum 

vessels [5-6] and optical components [7].   A possible 
advantage of this technique over the ion beam is that it 
cleans the entire surface of the gun which should reduce 
migration of contaminants and improve the cathode 
lifetime.  Glow discharges have also been used to clean 
Cu accelerator structures such as the AFEL linac [8], an 
eleven cell photo-injector/linac.  There it was observed 
that the glow was largely confined to a single cell, but 
could be moved to different cells through small changes 
in the rf drive frequency used to excite the glow 
discharge. 

This technique was implemented on the GTF gun using 
both hydrogen and an oxygen-helium mixture (90% He 
and 10% O2).  Gas can flow into the gun through either 
the half cell via the laser port or the full cell via the 
waveguide and is pumped out the beam exit port of the 
gun with a scroll pump.  The discharge is started using an 
rf source connected to the waveguide.  We have used both 
a 26 W CW rf source and a pulsed 1 kW rf source with 30 
μs pulse length, 200 Hz repetition rate and 5 W average 
power.  The rf frequency can be adjusted to control the 
location of the glow discharge as determined by a visual 
inspection.  Exciting the glow at the π mode frequency of 
2856 MHz confines the glow to the full cell and exciting 
the 0 mode at 2852.5 MHz confines the glow to the half 

cell.  However, atoms can move between cells through the 
cell to cell coupling aperture. 

The QE of the cathode was 0.5 10-5 at approximately 80 
MV/m after the gun was vented with LN2 boil-off to 
install the leak valve used to introduce the gas.  The first 
discharge was on for roughly 1 hour using hydrogen 
flowing into the full cell with an inlet pressure of 
approximately 300 mTorr.  The discharge was excited 
with the CW rf source at 2856 MHz.  The QE increased 
significantly to 6 10-5 and further increased to 8 10-5 after 
a second hour with the glow discharge.  Then we switched 
to the 0 mode frequency of 2852.5 MHz with all other 
parameters constant and the QE dropped over one order of 
magnitude to 0.3 10-5.  Multiple glows at 2856 MHz at 
pressures ranging from 30-600 mTorr had no effect on the 
QE.  This was an attempt to control the mean free path 
and thus the number of ions that reach the cathode from 
the glow discharge in the full cell. 

We theorized that with the glow in the half cell we had 
actually added carbon to the surface possibly by migration 
of carbon from the stainless tubes attached to the laser 
ports on the half cell to the cathode.  We introduced 
oxygen to the system which is expected to bond with the 
carbon forming CO or CO2 and accelerate the removal 
rate of surface carbon [5,7].  After a glow with the oxygen 
and helium gas at a pressure of  200 mTorr with the CW 
rf source at 2856 MHz the QE dropped to 0.01 10-5 which 
is the lowest value we have ever observed.  An identical 
glow discharge with hydrogen restored the QE to 0.3 10-5.  
It appears the oxygen attached to the Cu surface instead of 
the carbon and the hydrogen glow discharge removed the 
oxygen. Apparently the hydrogen ions are not energetic 
enough to remove the carbon.  We tried to increase the 
hydrogen ion’s energy by exciting the hydrogen with the 
1 kW pulsed rf source for one hour and the QE increased 
to 0.8 10-5.  However later glows with the pulsed rf source 
caused the QE to decrease. 

In an attempt to flow more hydrogen through the half 
cell we installed a leak valve on the laser port and then 
flowed directly into the half cell instead of into the full 
cell from the waveguide.  However, the QE decreased 
every time we glowed with the gas flowing into the half 
cell possibly indicating some sort of contamination 
introduced through this leak valve.  We also repeated the 
glow at 2852.5 MHz with the hydrogen flowing into the 
half cell instead of the full cell.  This time the QE had an 
insignificant change compared to the previous glow at 
2852.5 MHz when the QE decreased over an order of 
magnitude.  This seems to indicate the flow rate is an 
important parameter and may help remove contaminants 
instead of relocating them. 

One interesting result was an increase in the QE nearly 
every time we vented the gun with LN2 boil-off.  In one 
case the QE increased from 0.08 10-5 to 1 10-5 after 
venting and in another case it increased from 0.3 10-5 to 2 
10-5.  The QE would slowly decrease after every glow and 
then increase once the gun was vented.  We theorize that a 
contaminant in the LN2 boil-off attaches to the surface 
and reduces the work function or modifies the surface 
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states to increase the QE [9].  Subsequent hydrogen glow 
discharges then remove this contaminant which reduces 
the QE but leave the primary contaminant, Which is 
assumed to be carbon, untouched. This “doping” of the 
surface was also observed on the ARDB cathode after 
venting the gun. 

The dark current emitted from this cathode actually 
decreased during these tests.  Prior to the glow discharge 
the total integrated dark current at a field of 95 MV/m was 
250 pC with a peak current of 0.3 mA.  The final charge 
was only 100 pC with a peak current of 0.1 mA.  The 
Fowler-Nordheim field enhancement factor decreased 
from 120 to 90 but the emitting area increased nearly an 
order of magnitude.  The dark current decrease occurred 
after the glow discharge at 2852.5 MHz. 

Electron Bombardment of the Cathode Surface 
The possibility of cleaning photo-cathodes with 

electrons was also investigated.  A very simple method 
using electrons is possible by selecting a laser arrival time 
such that the electrons do not exit the gun but actually 
reverse direction and strike the cathode.  These back 
bombarding electrons have been extensively studied in 
thermionic rf guns [10-11].   

By adjusting the laser arrival time, the energy of the 
back bombarding electrons can be controlled as shown in 
Figure 2 where the energy of the electrons exiting the gun 
and those returning to the cathode are plotted as a 
function of laser phase for a peak field on axis of 95 
MV/m.  Electrons that reverse direction in the full cell are 
emitted at a laser phase between 93 and 117°.  Electrons 
emitted at a phase greater than 119° reverse direction in 
the half cell and thus typically have lower energy at the 
cathode.  Interestingly there are two narrow phase regions 
where the electrons actually reverse direction twice and 
finally exit the gun.  This phenomenon is observed 
experimentally when the emitted charge versus laser 
phase is carefully measured.  The emitted charge falls to 
zero around 115° and then a small peak reappears around 
120°.  Of course the exact phase where the charge turns 
on and off depends on the rf field amplitude and the laser 
pulse length. 
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Figure 2: Simulation of the electron energy at the gun exit 
as a function of laser phase is plotted as diamonds.  The 
squares show the energy of the electrons that return and 
strike the cathode. 

 
Experiments were conducted with a Mg cathode and 

3000 back-bombarding pulses with an estimated total 
charge of approximately 1 μC.  The initial experiment 
used a laser phase of 140°, which should produce an 
electron with a kinetic energy of 0.85 MeV striking the 
cathode.  No change in the QE was detected.  The laser 
phase was adjusted to 160° and later to 125° 
corresponding to a kinetic energy of the bombarding 
electrons at the cathode of 0.076 MeV and 1.4 MeV.  In 
all cases no measurable effect on the QE was observed.  
Back bombarding electrons also had no effect on the 
measured dark current. 

The total dose of the electrons is over a factor of 1000 
less than the ion beam dose and is possibly insufficient to 
produce a measurable effect on the QE.  Plus the electron 
beam size may be larger when it returns to the cathode 
further limiting the total charge available for cleaning.  
The electrons may also penetrate too deep to remove 
surface contaminants.   

CONCLUSIONS 
Glow discharge cleaning appears to remove some 

surface contaminants without increasing the dark current.  
However, at least one contaminant, which is assumed to 
be carbon, was not removed but rather appears to have 
increased.  Introduction of a small amount of water vapor 
may significantly improve the removal rate of surface 
carbon [7].  The hydrogen ion beam has the potential to 
remove all contaminants but the initial results showed no 
improvement in QE possibly due to misalignment of the 
ion beam or migration of contaminants.  The electron 
beam bombardment had no effect on the QE or dark 
current possibly due to the low amount of charge per unit 
area incident on the cathode. 

It is clear that additional diagnostics are necessary to 
understand the surface chemistry.  We hope to add an 
RGA to the vacuum system to understand what species 
are present.  Plus the surface contaminant coverage of the 
cathode should be measured using a technique such as 
XPS when the cathode is removed from the rf gun. It is 
important to understand which contaminants are present 
since this information can help determine what technique 
is best suited to remove them.  In addition it is desirable to 
measure the QE versus wavelength to understand the 
contaminants effect on the emission process.  The 
wavelength dependent QE gives detailed information 
regarding the work function and density of surface states.   

Perhaps a combination of techniques such as heating, 
glow discharge, ion beams and doping will be required to 
produce a clean metal cathode with high QE.  We will 
continue to study various cleaning techniques and the 
effect on the cathode QE, dark current and lifetime. 
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