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Abstract

We coupled Synchrotron Radiation (SR) theory with
laser beam optics. In the space-frequency domain SR
beams are described by solutions of the paraxial wave
equation. They appear as laser beams with transverse size
much larger than the wavelength. In practical situations
(e.g. undulators, bends), SR beams exhibit a virtual source,
similar to the waist of a laser-beam, strictly related with
the inverse Fourier transform of the far-field distribution.
The Fresnel formula can be used to propagate the field dis-
tribution from the waist to anywhere in space. The gen-
eral theory of SR in the near-zone developed in this paper
is illustrated for the special cases of undulator radiation,
edge radiation and transition undulator radiation (TUR). By
solving the inverse problem for the electric field we find an-
alytical expressions for near-field distributions in terms of
far-field data. A more detailed explanation of this subject
is provided in [1].

INTRODUCTION

In previous works we developed a formalism ideally
suited for analysis of SR problems, where we took ad-
vantage of Fourier Optics ideas [1]. Fourier Optics pro-
vides an extremely successful approach which revolution-
ized the treatment of wave optics problems and, in particu-
lar, laser beam optics problems. The use of Fourier Optics
led us to establish basic foundations for the treatment of
SR fields in terms of laser beam optics. Radiation from
an ultra-relativistic electron can be interpreted as radiation
from a virtual source producing a laser-like beam. The vir-
tual source is regarded as the analogous of the waist for a
laser beam, and often exhibits a plane wavefront. In this
case it is specified, for any given polarization component,
by a real-valued amplitude distribution of field. The laser-
like representation of SR is intimately connected with the
ultra-relativistic nature of the electron beam. In particular,
paraxial approximation always applies. Then, free space
basically acts as a spatial Fourier transformation, and the
far-zone field is, aside for a phase factor, the Fourier trans-
form of the field at any position z down the beamline. It is
also, aside for a phase factor, the Fourier transform of the
virtual source. Once the field at the virtual source is known,
the field at other longitudinal positions, both in the far and
in the near zone up to distances to the sources compara-
ble with the radiation wavelength, can be obtained with the
help of the Fresnel propagation formula. This means that
the near-zone field can be calculated from the knowledge
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of the far-zone field, that is possible because the parax-
ial approximation applies. The knowledge of the far-zone
field completely specifies, through the Fresnel integral, the
near-zone field as well. In the case when the electron gen-
erating the field is not ultra-relativistic, though, the parax-
ial approximation cannot be applied. Typically, the wave-
length is comparable with the radiation formation length,
and it is impossible to reconstruct the near-field distribu-
tion from the knowledge of the far-field pattern [2]. An
arbitrary SR source is equivalent to several virtual sources
inserted between the edges of each magnetic device. This
provides conceptual insight of SR sources and should fa-
cilitate their design and analysis. In fact, since the anal-
ysis of SR sources can be reduced to that of laser-like
sources, it follows that any result, method of analysis or
design and any algorithm specifically developed for laser
beam optics (e.g. the code ZEMAX, see [1]) is also appli-
cable to SR sources. We first apply our method to undu-
lator radiation around resonance. We find the field distri-
bution of the virtual source with the help of the far-zone
field distribution and we propagate to any distance of in-
terest. Similarly, we treat edge radiation [1], studying the
emission from a setup composed by a straight section and
two (upstream and downstream) bends. We derive an ex-
pression for the field from a straight section that is valid
at arbitrary observation position. Due to the superposition
principle, this expression can be used as building block for
more complicated setups. We use this idea to analyze a
TUR setup consisting of an undulator preceded and fol-
lowed by straight sections and bends (upstream and down-
stream). The first study on TUR constituted a theoretical
basis for many other studies [1], dealing both with theo-
retical and experimental issues. More recently, TUR has
been given consideration in the framework of large XFEL
projects. A method was also proposed [1] to obtain intense
infrared/visible light pulses naturally synchronized to x-ray
pulses from the LCLS XFEL by means of Coherent TUR.
In view of these applications, there is a need to extend the
knowledge of TUR to the near zone. We address it here.

FAR-FIELD DATA INVERSE PROBLEM

We represent the electric field in time domain �E(�r, t) as
a time-dependent function of an observation point located
at position �r = �r⊥ + z�z. In free-space, the field �E(�r, t)
satisfies the source-free wave equation. For monochro-
matic waves of angular frequency ω the wave amplitude

has the form �E⊥(z, �r⊥, t) = �̄E⊥(z, �r⊥) exp[−iωt]+C.C.,
where the frequency ω is related to the wavelength λ by

Proceedings of FEL 2006, BESSY, Berlin, Germany THAAU02

FEL Theory 501



ω/c = 2π/λ, and �̄E⊥ describes the variation of the wave

amplitude in the transverse direction. �̄E⊥ actually rep-
resents the amplitude of the electric field in the space-
frequency domain. We assume that the ultra-relativistic
approximation is satisfied, that is always the case for
SR setups. In this case the paraxial approximation ap-
plies [1]. This implies a slowly varying envelope of the
field with respect to the wavelength. We therefore in-

troduce �̃
E⊥ = �̄E⊥ exp [−iωz/c]. In paraxial approxi-

mation and in free space, �̃
E⊥ obeys the paraxial wave

equation along any fixed polarization component, that is
[∇⊥

2+(2iω/c)∂z] ˜E⊥ = 0, where derivatives in the Lapla-
cian operator ∇⊥

2 are taken with respect to the transverse
coordinates. Solving this equation with given initial condi-
tions at z gives

˜E⊥ =
iω

2πc(zo − z)

∫

d�r′ ˜E⊥(z, �r′) exp

⎡

⎢

⎣

iω
∣

∣

∣
�ro⊥ − �r′

∣

∣

∣

2

2c(zo − z)

⎤

⎥

⎦

(1)

where the integral is performed over the transverse
plane. A propagation equation for F(z, �u) =
∫

d�r′⊥ ˜E⊥(z, �r′⊥) exp [i�r′⊥ · �u], that is the spatial Fourier
transform of the field, reads instead:

F (z, �u) = F (zs, �u) exp
[

− ic|�u|2(z − zs)
2ω

]

, (2)

where zs is identified with the position of a virtual source.
Identification of the position zs = 0 with a virtual source
position is always possible, but not always convenient (al-
though often it is). From Eq. (1) and Eq. (2) a relation
follows between the far-zone field distribution, dependent
on the observation angle �θ, and the field distribution at the
virtual source position zs:

˜E⊥(zs, �r⊥) =
iωzo

2πc

∫

d�θ exp

[

− iω|�θ|2
2c

(zo + zs)

]

× ˜E⊥(�θ) exp
[

iω

c
�r⊥ · �θ

]

. (3)

Finally, the transverse components of the envelope of the
far field can be written as [1]:

�̃
E⊥ = − iωe

c2zo

∫ ∞

−∞
dz′exp [iΦT ]

[(

vx(z′)
c

−xo

zo

)

�x +
(

vy(z′)
c

− yo

zo

)

�y

]

,

(4)

where the total phase ΦT is

ΦT = ω

[

s(z′)
v

− z′

c

]

+ ω

(

1
zo

+
z′

z2
o

)

× [xo − x′(z′)]2 + [yo − y′(z′)]2

2c
(5)

and the charge of the electron is (−e). Eq. (4) can be
obtained starting directly with Maxwell’s equations in the
space-frequency domain. Here vx(z′) and vy(z′) are the
horizontal and the vertical components of the transverse
velocity of the electron, while x′(z′) and y′(z′) specify the
transverse position of the electron as a function of the lon-
gitudinal position. Finally, we defined the curvilinear ab-
scissa s(z′) = vt′(z′), v being the modulus of the velocity
of the electron. Eq. (4) can be used to characterize the far
field from an electron moving on any trajectory as long as
the ultra-relativistic approximation is satisfied. Then, once
the far field is known, Eq. (3) can be used to calculate
the field distribution at the virtual source. Finally, Eq. (1)
solves the propagation problem at any observation position
zo. Note that part of the phase in Eq. (5) compensates with
the phase in |�θ|2 in Eq. (3) at zs = 0. If Eq. (4) describes
a field with a spherical wavefront with center at z = 0,
such compensation is complete. The centrum of the spher-
ical wavefront is a privileged point, and the plane at z = 0
exhibits a plane wavefront. This explains why the choice
zs = 0 is often privileged with respect to others.

DISCUSSION

It makes sense to ask what is the range of observation
positions where our algorithm applies, and what is the ac-
curacy of our result in this range. We show that the paraxial
approximation holds with good accuracy up to observation
positions such that its distance d from the electromagnetic
sources in the space-frequency domain, when d � λ. To
do so, we compare results from the paraxial treatment with
results without the help of the paraxial approximation. The
paraxial equation must then be replaced with Helmholtz

equation c2∇2 �̄E + ω2 �̄E = 4πc2�∇ρ̄ − 4πiω�̄j, ρ̄(�r, ω)
and �̄j(�r, ω) being the Fourier transform of the charge den-
sity ρ(�r, t) = −eδ(�r − �r′(t)) and of the current density
�j(�r, t) = −e�v(t)δ(�r − �r′(t)). Application of the proper
Green’s function yields:

�̃
E(�ro, ω) = − iωe

c

∫ ∞

−∞
dz′

1
vz(z′)

[

�β − �n

|�ro − �r′(z′)|

− ic

ω

�n

|�ro − �r′(z′)|2

]

exp
{

iω

[(

s(z′)
v

− z′

c

)

+

(

|�ro − �r′(z′)|
c

− zo − z′

c

)]}

. (6)

Eq. (6) is an exact solution of Maxwell’s equations with
boundary conditions at infinity. The exactness of Eq. (6)
allows us to control the accuracy of the paraxial approxi-
mation. A conservative estimate shows that when d � Lf

this accuracy is of order c/(ωLf), but quickly decreases
as Lf � d � c/ω remaining, at least, of order of c/(ωd).
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The integrand term scaling as 1/R2 (with R = |�ro−�r′(z′)|)
can be dropped in Eq. (6) whenever d � λ. This is al-
ways the case in paraxial approximation. Note that the in-
verse field problem cannot be solved without application
of the paraxial approximation. In this case we should solve
the homogeneous Helmholtz equation with boundary con-
ditions constituted by the knowledge of the field on a open
surface (for example, a transverse plane) and additionally,
Rayleigh-Sommerfeld radiation condition at infinity (sepa-
rately for all polarization components). This is not enough
to reconstruct the field at any position in space. However,
if the paraxial approximation is applicable, the inverse field
problem has a unique and stable solution. We recognize a
few observation zones of interest. Far zone. d is such
that �n = const. Formation zone. Defined by d � Lf .
Radiation zone. The field can be interpreted as radiation.
1/R−zone . The term in 1/R2 can be neglected in Eq.
(6). Reconstruction zone. The inverse problem based on
far-field data can be solved.

In all generality, from Eq. (6) follows that the 1/R−zone
always coincide with the reconstruction zone. Any system
of interest is characterized by a size a, a formation length
Lf and the radiation wavelength λ. In the case of ultra-
relativistic systems a � Lf � λ. Then, the near zone is
defined by d � a, the formation zone by d � Lf , the radi-
ation zone, the reconstruction zone and the 1/R−zone by
d � (c/ω). Ultra-relativistic cases present an increased
level of complexity with respect to others. This complexity
is at the origin of several misconceptions. Usually text-
books do not follow a direct derivation of Eq. (6). They
start with the solution of Maxwell’s equation in the space-
time domain, the Lienard-Wiechert fields, and they apply a
Fourier transformation:

�̄E(�ro, ω) = −e

∫ ∞

−∞
dt′

{

�n − �β

γ2(1 − �n · �β)2R(t′)2

+
�n × [(�n − �β) × �̇β]

c(1 − �n · �β)2R(t′)

}

exp
[

iω

(

t′ +
R(t′)

c

)]

(7)

where �̇
β = �̇v/c. Inspecting Eq. (7) it looks paradoxical that

the near field, including velocity and acceleration terms,
can be characterized starting from the far zone, including
acceleration term only. However, the magnitude of terms
in 1/R2 and 1/R in Eq. (7) does not depend on λ, while
that of terms in 1/R and 1/R2 in Eq. (6) does. Eq. (6) and
Eq. (7) are equivalent, as can be shown by addition of the
full derivative dΦ(t′)/dt′ of a properly chosen Φ(t′) func-
tion to the integrand of Eq. (7) (and using t ′ = z′/vz(z′)).
Addition of different full derivatives yields an infinite num-
ber of equivalent representations for the field, and physical
sense can be ascribed to the integral only. The terms in
1/R and in 1/R2 in Eq. (6) appear as a combination of the
terms in 1/R (acceleration term) and 1/R2 (velocity term)
in Eq. (7). They differ from each other. As a result, there
are contributions to the radiation from the velocity part in

Eq. (7). The presentation in Eq. (6) is most interesting
because the magnitude of the 1/R2-term in Eq. (6) can be
directly compared with the magnitude of the 1/R-term in-
side the sign of integral, that is related to the 1/R-zone and
to the reconstruction zone. If one forgets about this fact
one would incorrectly conclude that far-field data cannot
be used to reconstruct the field in the near-zone.

UNDULATOR LASER-LIKE SOURCE

Let us apply our algorithm in the case of undulator
radiation at resonance, i.e. ω/(2γ2c)(1 + K2/2) =
2π/λw. Here λw is the undulator period, and K =
λweHw/(2πmec

2), me being the electron mass and Hw

being the maximum of the magnetic field produced by the
undulator on the z axis. Position z = 0 is in the undula-
tor center. A well-known, axis-symmetric expression for
the distribution of the first harmonic field ˜E⊥(zo, θ) from a
planar undulator in the far-zone as a function of the obser-
vation angle θ is

˜E⊥ = −KωeLw

c2zoγ
AJJ exp

[

i
ωzo

2c
θ2
]

sinc
[

ωLwθ2

4c

]

, (8)

where the field is polarized in the horizontal direction,
Lw = λwNw is the undulator length, Nw the number
of undulator periods and AJJ = Jo[K2/(4 + 2K2)] −
J1[K2/(4 + 2K2)], Jn being the n-th order Bessel func-
tion of the first kind. Eq. (8) describes a field with spher-
ical wavefront centered at z = 0. Eq. (3) yields the field
distribution at the virtual source (also axis-symmetric) [1]:

˜E⊥(0, r⊥) = i
Kωe

c2γ
AJJ

[

π − 2Si
(

ωr2
⊥

Lwc

)]

, (9)

Si(·) being the sin integral function and r⊥ the distance
from the z axis on the virtual-source plane. In laser physics,
the waist is in the center of the optical cavity and the
Rayleigh length is related to the resonator geometrical fac-
tor. Our virtual source is in the center of the undulator and
the Rayleigh length is related to Lw. In both cases we have
a plane phase front, and the transverse dimension of the
waist is much larger than λ. Also, the phase of the wave-
front in Eq. (9) is shifted of −π/2 with respect to the wave-
front in the far zone in analogy with the Guoy phase shift.
Eq. (1) gives the field at arbitrary observation position z o:

˜E⊥ =
KωeAJJ

c2γ

×
[

Ei
(

iωr2
⊥

2zoc − Lwc

)

− Ei
(

iωr2
⊥

2zoc + Lwc

)]

(10)

Ei(·) being the exponential integral function. The field sin-
gularity at zo = Lw/2 and r⊥ = 0 is related with the use of
the resonant approximation. Introducing normalized units
�̂r =

√

ω/(Lwc)�r⊥, �̂
θ =

√

ωLw/c�θ and ẑ = z/Lw we
obtain the intensity profile at the virtual source
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Figure 1: Intensity pattern Î at the virtual source.
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Figure 2: Evolution of the intensity profile as in Eq. (12)
(solid lines) compared with far field asymptotic (dashed
lines).

Î(0, r̂⊥) =
1
π2

[

π − 2Si
(

r̂2
⊥
)]2

, (11)

and at any distance ẑo, both in the near and in the far zone:

Î
(

ẑo, θ̂
)

= ẑ2
o

∣

∣

∣

∣

∣

Ei

(

iẑ2
o θ̂2

2ẑo − 1

)

− Ei

(

iẑ2
o θ̂2

2ẑo + 1

)∣

∣

∣

∣

∣

2

, (12)

Screen

zo

z
A O B

x

Figure 3: Edge radiation geometry.

where θ̂ = r̂⊥/ẑo. Î at the virtual source is plotted in Fig.
1. The evolution of the intensity profile for different z o,
Eq. (12), is given in fig. 2. A virtual source can be used
as an input for wavefront propagation codes (as ZEMAX ,
PHASE, SRW [1]), allowing for the presence of complicate
optics, likewise it has been used as an input to Eq. (1) for
free-space propagation. Spontaneous SR from an electron
beam can be treated as an incoherent collection of laser-like
beams with different offsets and deflections (summing up
the intensities), while if the electron beam is distributed co-
herently, radiation can be described as a coherent collection
of laser-like beams.

EDGE RADIATION

We consider the system depicted in Fig. 3. An elec-
tron enters the setup via a bending magnet, passes through
a straight section (segment AB) and exits the setup via an-
other bend. Edge radiation (see references in [1]) is col-
lected at a distance zo from the center of the straight sec-
tion. The trajectory and, therefore, the space integration
in Eq. (4) consists of the two bends b1 and b2, and of the
straight section AB. Let L be the length of AB. Points A
and B are thus located at zA = −L/2 and zB = L/2. In
general, one should sum the contribution due to the straight
section to that from the bends. In some cases the pres-
ence of the bending magnets can be ignored as if they had
zero length, and what may be called ”zero-length switchers
approximation” applies. Magnets act like switchers: the
first magnet switches the radiation harmonic on, the sec-
ond switches it off. Switchers may have different physical
realizations, depending on the setup. There is no limita-
tion to the length of the switcher. The only common fea-
ture between different switchers is that the switching pro-
cess depends exponentially on the distance from the begin-
ning of the process. Since electrodynamics is a linear the-
ory, when the straight-section contribution cannot be con-
sidered a good approximation to the total field, it can still
be considered as a fundamental building block for a more
complicated setup. This justify our choice to deal with the
straight-section contribution to the field only. It is inter-
esting to discuss when the field due to switchers is negli-
gible in our study-case. For L � γ 2(c/ω), the formation
length for the straight section is γ2(c/ω), while the forma-
tion length for the bend is ((c/ω)ρ2)1/3, ρ being the radius
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Figure 4: Directivity diagram (solid lines) of the radiation
from the setup in Fig. 3 and envelope of the directivity
diagram (dotted lines).

of the bend. Let the ratio between the latter and the former
be ε2 = (λc/λ)2/3 � 1, where λc = 4πρ/(3γ3) is the crit-
ical wavelength for SR and λ � λc, as we are interested
in edge radiation. The distance dc = εγ2(ω/c) turns out
to constitute an extra characteristic-length for our system.
When d � dc, the straight section contribution dominates
the bending magnet one for r⊥ > εγ(ω/c), while for other
values of r⊥ the two contributions are comparable. When
d ∼ dc the zero-length switcher approximation cannot be
used. When d � dc we the straight section contribution
dominates for 0 < r⊥ � ((ω/c)2ρ)1/3, the characteristic
size of the radiation being ε((ω/c)2ρ)1/3. Finally, when
d � γ2(ω/c), the straight section contribution dominates
for 0 < θ � ((ω/c)/ρ)1/3, the characteristic angle of the
radiation being ε((ω/c)/ρ)1/3.

Far field pattern of edge radiation

Field contribution calculated along the straight sec-
tion. Accounting for the geometry in Fig. 3 we have
s(z′) = z′ for zA < z′ < zB . Use of Eq. (4) yields
the field contribution from the straight section AB:

�̃
EAB =

iωeL

c2zo
exp

[

iωθ2zo

2c

]

�θ sinc
[

ωL

4c

(

θ2 +
1
γ2

)]

.

(13)

Eq. (13) is describes a spherical wave and explicitly de-
pends on L. The formation length L fs for the straight sec-
tion AB can be written as Lfs ∼ min[γ2(c/ω), L]. The
far-zone asymptotic is independent of such value and al-
ways valid at observation positions zo � L.

Energy spectrum of radiation. With the help of nor-

malized quantities �̂
θ =

√

ωL/c�θ and φ̂ = ωL/(γ2c) we
may write the directivity diagram Î of the radiation as
Î ∼ θ̂2 sinc2[(θ̂2 + φ̂)/4]. This is plotted in Fig. 4 for
several values of φ̂ as a function of the normalized angle θ̂.
The natural angular unit is evidently (2πL/λ)−1/2.

There are two asymptotic cases for the problem param-
eter φ̂: φ̂ � 1 and φ̂ � 1. The behavior of the far-field
emission is well-known in literature [1]. We take this as the
starting point for investigations based on Fourier Optics.

Method of virtual sources

Edge radiation as a field from a single virtual source.

Eq. (3) and Eq. (13) yield the virtual source �̃
E(0, �r⊥):

�̃
E = −eLω2

2πc3

∫

d�θ�θsinc
[Lω

4c

(

θ2+
1
γ2

)]

exp
[ iω�θ · �r⊥

c

]

(14)

The Fourier transform in Eq. (14) is difficult to calculate
analytically in full generality. An analytic expression for
the field amplitude at the virtual source for φ̂ � 1 reads:

�̃
E(0, �r⊥) =

4ωe

c2L
�r⊥sinc

( ω

Lc
|�r⊥|2

)

. (15)

For any value of φ̂, Eq. (15) explicitly depends on L, as
the far-field emission does. Using �̂r =

√

ω/(Lc)�r⊥ the
intensity pattern of the virtual source is Î(r̂) ∼ r̂2sinc2(r̂2)
and is plotted in Fig. 5. The Fresnel formula yields the field
in the near and the far zone for φ̂ � 1

�̃
E = −2e

c

�r⊥
r2
⊥

exp
[

i
ωr2

⊥
2czo

]{

exp
[

−iωr2
⊥

2czo(1 + 2zo/L)

]

− exp
[

iωr2
⊥

2czo(−1 + 2zo/L)

]}

, (16)

where the singular behavior at �r⊥ = 0 and zo −→ L/2
cannot be resolved within the paraxial approximation. The
intensity profile associated with Eq. (16) is

Î =
1

θ̂2

∣

∣

∣

∣

∣

[

exp

(

−iθ̂2ẑo

2(1 + 2ẑo)

)

− exp

(

iθ̂2ẑo

2(−1 + 2ẑo)

)]∣

∣

∣

∣

∣

2

,

(17)

where θ̂ = r̂o/ẑo and ẑo = zo/L. A comparison between
intensity profiles at different observation points ẑo is plot-
ted in Fig. 6. When condition φ̂ � 1, studied until now, is
not satisfied, the integral in Eq. (14) can be calculated nu-
merically. The intensity distribution for the virtual source
at φ̂ = 0.1, φ̂ = 1, φ̂ = 10 and φ̂ = 50 are plotted in Fig.
7. An enlarged plot of the case φ̂ = 50 is given in Fig.
8. Fine structures are now evident, consistently with Fig.
4 for the far zone. Once the field at the virtual source is
specified for any value of φ̂, Fourier Optics can be used to
propagate it. However, we prefer to use an alternative way
to solve the field propagation problem for any value of φ̂,
capable of giving a better physical insight at φ̂ � 1.

Edge radiation as a superposition of the field from
two virtual sources. The far field in Eq. (13) can be writ-

ten as �̃
E(zo, �θ) = �̃

E1(zo, �θ) + �̃
E2(zo, θ̂), where
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Figure 6: Evolution of the intensity profile for edge radi-
ation for φ̂ � 1 at different observation distances (solid
lines) compared to the far-zone intensity (dashed lines).

Figure 7: Intensity profiles of the virtual source for differ-
ent values of φ̂ (solid lines) compared with the case φ̂ � 1
(dotted lines).

Figure 8: Intensity pattern at the virtual source for φ̂ = 50.

Figure 9: Edge radiation intensity profile at φ̂ = 50 for
different observation distances.
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�̃
E1,2

(

ẑo,
�̂
θ
)

= ± 2e�θ

czo(θ2 + 1/γ2)

× exp
[

± iωL

4cγ2

]

exp
[

iωLθ2

2c

(

zo

L
± 1

2

)]

. (18)

The two terms �̃
E1 and �̃

E2 represent two spherical waves
centered at zs1 = L/2 and zs2 = −L/2, corresponding to
two virtual sources. Their field distribution is given by

�̃
E

(

±L

2
, �r⊥

)

= ∓2ieω

c2γ
exp

[

± iωL

4cγ2

]

�r⊥
r⊥

K1

(

ωr⊥
cγ

)

,

(19)

where K1(·) is the modified Bessel function of the first
order. It should be noted that Eq. (19) is identical to
the well-known frequency-domain expression for the trans-
verse component of the field from an ultra-relativistic elec-
tron moving in uniform motion. Both far zone field and the
field at the virtual sources exhibit dependence on L through
phase factors only. Application of the Fresnel formula al-
lows to calculate the field at any distance zo in frees space.

Using the definition �̂
θ = �̂ro/ẑo we obtain Î ∼ |A1 + A2|2,

where

A1,2 = ∓
�̂
θ

θ̂

2i

√

φ̂ exp
[

±iφ̂/4
]

ẑo ∓ 1
2

exp

[

iθ̂2ẑ2
o

2
(

ẑo ∓ 1
2

)

]

×
∫ ∞

0

dξξK1(
√

φ̂ξ)J1

[

θ̂ξẑo

ẑo ∓ 1
2

]

exp

[

iξ2

2
(

ẑo ∓ 1
2

)

]

(20)

In Fig. 9 we plotted results for the field propagation for the
case φ̂ = 50. Radiation profiles are shown as a function of
θ̂ at ẑo = 0.52, ẑo = 0.6, ẑo = 1.5 and ẑo = 100.0. Let
us discuss the two limiting cases for φ̂ � 1 and for φ̂ � 1.
Consider first φ̂ � 1. The field at any observation distance
is given by Eq. (16). There are only two observation zones
of interest. Far zone, in the limit for ẑo � 1 and Near
zone, when ẑo � 1. From Eq. (16), the total field results
from the interference of the two virtual sources. The trans-
verse size of these sources is γ(c/ω), independently of L.
In the center of the setup instead, the virtual source has a
dimension

√

(c/ω)L (see Eq. (16)). The source in the cen-
ter of the setup is much smaller than those at the edge, as
the two sources at the edges interfere in the center of the
setup. Consider now the case φ̂ � 1. Let d1,2 = zo ∓ L/2
be the distances of the observer from the edges. One can
recognize four regions of interest, that are more naturally
discussed in the two-source picture. Two-edge radiation.
Far zone. When d1,2 � L we are summing far field contri-
butions from the two edge sources, see Fig. 9 for ẑo = 100.
Two-edge radiation. Near zone. When d1,2 ∼ L both
contributions from the sources are important, but d1 and d2

become sensibly different, see Fig. 9 for ẑo = 1.5. Single-
edge radiation. Far zone. When γ2(c/ω) � d1 � L the

Screen

zo

z
A B C D

x

Figure 10: TUR geometry.

contribution due to the near edge is dominant, see Fig. 9
for ẑo = 0.6. Single-edge radiation. Near zone. When
0 � d1 � γ2(c/ω) we have the near-field contribution
from a single edge, and the intensity distribution tends to
reproduce the behavior of the square modulus of Eq. (19).
See Fig. 9 for ẑo = 0.52.

TRANSITION UNDULATOR RADIATION

Consider the system in Fig. 10. An electron enters the
setup via a bending magnet, passes through a straight sec-
tion AB, an undulator BC, and another straight section
CD. Finally, it exits the setup via another bend. TUR (see
references in [1]) is collected at a distance zo from the ori-
gin of the reference system, located in the middle of the
undulator. As before we ignore the presence of the bending
magnets having already discussed the applicability of the
”zero-length switcher approximation”.

Far field pattern calculations

Field contribution from the undulator. We first con-
sider the contribution �̃

Eu from the undulator. We assume a
planar undulator and we introduce the longitudinal Lorentz
factor γz = γ/(

√

1 + K2/2). Frequencies of interest are
ω � 2γ2

zckw (with kw = 2π/λw). As a result one obtains

�̃
Eu =

iωe

c2zo

∫ zC

zB

dz′exp [iΦBC ] (θx�x + θy�y) (21)

with

Φu = ω

[

θ2
x + θ2

y

2c
zo +

z′

2c

(

1
γ2

z

+ θ2
x + θ2

y

)

]

. (22)

Field contribution from the straight sections. The
field contribution from a straight section has been dealt
with in the previous Section. Accounting for the proper

phase shift, one obtains the contributions �̃
E1 from AB and

�̃
E2 from CD:

�̃
E(1,2) =

iωe

c2zo

∫ z(B,D)

z(A,C)

dz′ exp
[

iΦ(1,2)

]

(θx�x + θy�y)

(23)
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where Φ(1,2) in Eq. (23) is given by

Φ(1,2) = ω

[

θ2

2c
zo −

Lw

4cγ2
z

+
Lw

4cγ2
+

z′

2c

(

1
γ2

+ θ2

)]

.

(24)

Total field and energy spectrum of radiation. The
contributions from the segments AB, BC and CD are:

�̃
E(1,2) =

iωeL(1,2)

c2zo

�θsinc
[

ωL(1,2)

4c

(

1
γ2

+ θ2

)]

× exp
[

iωθ2zo

2c

]

exp
[

− iωLw

4c

(

1
γ2

z

+ θ2

)]

× exp
[

∓
iωL(1,2)

4c

(

1
γ2

+ θ2

)]

, (25)

�̃
Eu =

iωeLw

c2zo

�θsinc
[

ωLw

4c

(

1
γ2

z

+ θ2

)]

exp
[

iωθ2zo

2c

]

(26)

The total field produced by the setup is obtained by sum-
ming up these contributions. The resulting energy density
of radiation is known in literature [1].

Virtual source specification. Field propagation.

Eq. (25) and Eq. (26) can be interpreted as far field
radiation from separate virtual sources with plane wave-
fronts, located at zs1 = −Lw/2 − L1/2, zsu = 0 and
zs2 = Lw/2 + L2/2 and characterized by

�̃
Es(1,2) = −

ω2eL(1,2)

2πc3
exp

[

∓ iω

4c

(

Lw

γ2
z

+
L(1,2)

γ2

)]

×
∫

d�θ�θsinc
[

ωL(1,2)

4c

(

θ2 +
1
γ2

)

]

exp
[

iω

c
�θ · �r⊥

]

,

(27)

�̃
Esu = −ω2eLw

2πc3

×
∫

d�θ �θ sinc
[

ωLw

4c

(

θ2 +
1
γ2

z

)]

exp
[

iω

c
�θ · �r⊥

]

.

(28)

L1, L2 and Lw can assume different values. γ and γz

are also different. We prescribe the same normalization

for all quantities: �̂
θ =

√

ωLtot/c�θ, φ̂ = ωLtot/(γ2c)
and �̂r⊥ =

√

ω/(Ltotc)�r⊥. Then, we introduce parame-
ters L̂1 = L1/Ltot, L̂2 = L2/Ltot, L̂w = Lw/Ltot and
φ̂w = (γ2/γ2

z)φ̂. Finally, we define ẑs = zs/Ltot. One
may check that, in the limit for φ̂ � 1 and φ̂w � 1 one
obtains the same results as for edge radiation from a single
straight section. A second region of interest in the param-
eter space that can be dealt with analytically is for φ̂ � 1
and φ̂w � 1. In this limit, the contribution from the un-
dulator can be neglected, because the sinc(·) is strongly

suppressed. Then, �̂
E(ẑsu, �̂rs) � 0, where �̃

E = (ωe/c2)�̂E.
The surviving virtual sources are:
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Figure 11: Evolution of the intensity profile for TUR for
φ̂w = 12π (solid lines) and comparison with far-zone in-
tensity (dashed lines).

�̂
Es(1,2) =

4�̂r⊥
L̂(1,2)

exp

[

− iL̂wφ̂w

4

]

sinc
(

∣

∣

∣

�̂r⊥

∣

∣

∣

2

/L̂1

)

. (29)

Eq. (29) describes virtual sources characterized by plane
wavefronts. Use of the Fresnel propagation formula, Eq.
(1) allows reconstruction of the field in the near and in the
far zone. The two surviving contributions to the field are:

�̂
E(1,2) = −4�̂r⊥

r̂2
⊥

exp

[

∓ iL̂wφ̂w

4
+

ir̂2
⊥

2(ẑo − ẑs(1,2))

]

×
{

exp

[

− iL̂1r̂
2
⊥

2(ẑo − ẑs(1,2))(L̂(1,2) + 2ẑo − 2ẑs(1,2))

]

− exp

[

iL̂(1,2)r̂
2
⊥

2(ẑo − ẑs(1,2))(−L̂(1,2) + 2ẑo − 2ẑs(1,2))

]}

(30)

Eq. (30) solves the propagation problem for the near and
the far field when φ̂ � 1 and φ̂w � 1. The intensity pat-
tern is obtained by summing up contributions in Eq. (30)
and taking square modulus of the sum. To give an example
we study the case L1 = L2 = Lw = Ltot/3. The intensity
pattern periodically depends on φ̂w � 1 with a period 12π.
For illustration, in Fig. 11 we plot the intensity profile for
φ̂w = 12π at different distances ẑo and we compare these
profiles with the far field asymptote.
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