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Abstract

The harmonic generation process in a harmonic cascade
(HC) FEL is subject to noise degradation which is propor-
tional to the square of the total harmonic order [1]. In
this paper, we study the shot noise evolution in the first-
stage modulator and radiator of a HC FEL that produces the
dominant noise contributions. We derive the effective input
noise for a modulator operating in the low-gain regime, and
analyze the radiator noise for a density-modulated beam.
The significance of these noise sources in different har-
monic cascade designs is also discussed.

INTRODUCTION

Harmonic cascade (HC) FELs are envisioned to generate
fully coherent x-ray pulses [2] and are currently under ac-
tive development for several VUV and soft x-ray projects
(see, e.g., Refs. [3, 4]). It was pointed out in Ref. [1] that
electron shot noise can be amplified by at least the square
of the total harmonic order in this process, much like a fre-
quency multiplication chain in radar communications [5].
Thus, it is important to understand the shot noise contribu-
tions in the harmonic generation process which may be the
limiting factors in determining the temporal coherence or
the final wavelength reach of these seeded FELs.

In a self-amplified spontaneous emission (SASE) FEL,
the one-dimensional (1D) shot noise power spectrum is
ργmc2/(2π) [6], where ρ is the FEL Pierce parame-
ter [7] and γmc2 is the electron energy. The shot noise
power spectrum can be identified to be about the forward-
direction spontaneous undulator radiation in the first two
power gain lengths [8]. The three-dimensional (3D) cor-
rection to this simple 1D result including effects of energy
spread and emittance is given in Refs. [9, 10]. If the first
undulator of a HC FEL operates in the high-gain regime
(i.e., much longer than the gain length), the SASE noise
power (integrated over the gain bandwidth) may be used
to estimate its noise contribution to a HC FEL. However,
due to the availability of high-power seed laser, the typ-
ical design of the first undulator of a HC FEL is a short
(energy) modulator that operates in the low-gain (or even
no-gain) regime [3, 4, 11]. Thus, the shot noise content of
this modulator can be different from a high-gain undulator.
After the dispersion section, the density-modulated elec-
tron beam entering the radiator generates additional shot
noise. In this paper, we analyze the shot noise evolution
in the first-stage modulator and radiator of a HC FEL that
produces the dominant noise contributions. We also dis-
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cuss the significance of these noise sources in different har-
monic cascade designs.

ANALYSIS

To illustrate this noise degradation process, we consider
a seed signal at the fundamental wavelength λ1 = 2π/k1 =
2πc/ω1:

E1 = (E0+ΔE)eiθ+iΔθ ≈ (E0+ΔE)eiθ(1+iΔθ) . (1)

Here E0 and θ = −ω1t are the amplitude and the phase
of the signal, ΔE and Δθ represent any small amplitude
and phase noises (such as caused by the electron shot noise
and/or any noise carried by the seed laser). After a total of
Nh = h1h2... frequency multiplication, the electric field at
the output harmonic is

ENh
=G(E0 + ΔE) exp (iNhθ + iNhΔθ)

≈G(E0 + ΔE)eiNhθ (1 + iNhΔθ) , (2)

where we have assumed that NhΔθ � 1 (otherwise the
effect is rather large), and G is an arbitrary function of the
field amplitude (such as the Bessel function bunching fac-
tor). Thus, the noise-to-signal ratio at the final harmonic
radiation is [1, 5](

Pn

Ps

)
Nh

= Nh
2

(
Pn

Ps

)
1

. (3)

Nh can be a very large number (a few hundred to a few
thousand when harmonic cascading a UV laser to an x-ray
FEL). (Pn)1 is the initial noise power which includes both
the intrinsic laser noise and the electron shot noise. Sup-
pose that the seed laser noise is controlled to a tolerable
level, the shot noise fluctuations of the electron beam pro-
vide the essential contributions, which will be studied here.

We focus our analysis on the first-stage of a harmonic
cascade that includes a modulator, a dispersion section and
a radiator (tuned to the hth harmonic of the seed wave-
length) as shown in Fig. 1. This first stage has the largest
total harmonic conversion factor and hence produces the
dominate noise sources. The initial longitudinal phase
space distribution function is

F (θ0, η0) =
k1

χ

Ne∑
j=1

δ(θ0 − θj)δ(η0 − ηj) , (4)

where θ0 = −ck1t0 describes the electron phase relative to
the EM wave (i.e., input laser field), η0 describe the initial
relative energy deviation, and χ = Ne/lb is the line den-
sity of the electron bunch with Ne electrons and lb bunch
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Figure 1: Schematic of the first-stage HC FEL.

length. The normalization in Eq. (4) is chosen so that the
ensemble average

〈 ∫
F (θ0, η0)dη0

〉
= 1 (5)

for a constant current profile.

In typical HC FEL designs [3, 4, 11], the first undulator
is relatively short and is mainly an energy modulator, then
we have

η1 =η0 + ηs sin θ0 + ηn(θ0) , (6)

where ηs is the energy modulation amplitude induced by
the seed laser field, and ηn is the energy modulation in-
duced by the noisy spontaneous undulator radiation.

A dispersion section immediately after the modulator
can convert the beam energy modulation into a density
modulation. This is accompanied by a magnetic chicane
that changes the phase of the electron according to its en-
ergy deviation:

θ1 = θ0 + k1R56η1 = θ0 + Dη1 . (7)

Here R56 is the net momentum compaction of the chi-
cane together with the first undulator (modulator), and
D = k1R56. The harmonic bunching near the h th har-
monic (when ν ∼ h) can be found as

bν =
∫

dθ1

k1lb
dη1e

−iνθ1F (θ1, η1)

=
∫

dθ0

k1lb
dη0e

−iν[θ0+D(η0+ηs sin θ0+ηn)]F (θ0, η0) .

(8)

Here we have assumed the laser pulse length is at least
as long as the electron bunch length. If the laser pulse
only overlaps a fraction of the electron bunch, l b should
be taken to be the laser pulse length instead of the elec-
tron pulse length, then Ne represents number of electrons
within lb. Let us also assume that the modulated part of the
electron bunch is long compared to the laser wavelength
(i.e., k1lb � 1), and that the electron energy distribution
is Gaussian with a slice rms energy spread ση , we expand
Eq. (8) in Bessel series of ηs and to the first-order in ηn (as

|hDηn| � 1) to obtain

bν =
∫

dθ0

k1lb

∫
dη0

∞∑
p=−∞

Jp(−hDηs)ei(p−ν)θ0e−iνDη0

×(1 − ihDηn)F (θ0, η0)

=
∞∑

p=−∞
Jp(−hDηs)

[
1

Ne

Ne∑
j=1

ei(p−ν)θj e−iνDηj

−ihD exp

(
−h2D2σ2

η

2

) ∫
dθ0

k1lb
ei(p−ν)θ0ηn(θ0)

]
,

(9)

where we have applied the smooth distribution function in
the second term of the bracket as ηn is treated as a small
perturbation.

When ν = p = h, the first term in the bracket produces
the desired harmonic bunching signal as

bh =
Jh(−hDηs)

Ne

Ne∑
j=1

e−ihDηj

=Jh(−hDηs) exp

(
−h2D2σ2

η

2

)
. (10)

When ν �= h, the first term produces the noise bunching in
the radiator as the ensemble average

〈|br
ν |2〉 =

1
Ne

∞∑
p=−∞

J2
p (−hDηs) =

1
Ne

. (11)

Thus, the modulated bunch generates the same amount of
the shot noise bunching in the radiator as a fresh electron
bunch.

The second term in the bracket of Eq. (9) is the noise
bunching originated from the modulator. As ηn is nearly a
sinusoidal function of θ0, it can be written as

bm
ν = exp

(
−h2D2σ2

η

2

)[
− ihDJh+1(−hDηs)η+

n (Δν)

− ihDJh−1(−hDηs)η−
n (Δν)

]
, (12)

where Δν = ν − h and

η±
n (Δν) =

∫
dθ0

k1lb
ei(±1−Δν)θ0ηn(θ0) (13)

is the Fourier component of ηn near the first undulator
(modulator) resonant frequency ck1.

If x = hDηs � 1, we can expand Jh(x) ∼ (x/2)h/h!;
If the dispersion strength is optimized to yield the maxi-
mum |bh| at hDηs ∼ h or D ∼ 1/ηs, then Jh ∼ Jh±1 ∼
0.3. In either case, we can approximate the bunching ratio
as

∣∣∣bm
ν

bh

∣∣∣2 ≈ 4h2 |η±
n (Δν)|2

η2
s

. (14)
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The power spectrum dP/dω in the radiator is proportional
to |b|2. Integrating over their respective bandwidths in the
radiator, we obtain the modulator noise-to-signal power ra-
tio as

(
Pm

n

Ps

)
h

= 4h2 Δωm
n 〈|η±

n (Δν)|2〉
Δωsη2

s

, (15)

where Δωs = 2πc/lb is the Fourier transform limited
bandwidth for the signal, and Δωm

n is the bandwidth of
the modulator noise. For simplicity, we assume that the
full modulator bandwidth is much smaller than the full ra-
diator bandwidth centered around a much higher frequency
(i.e., Δωm = Δνmω1 < Δωr = Δνrωh), then we have
Δωm

n = Δωm = Δνmω1 without convoluting the band-
widths of the modulator and the radiator.

The laser-induced energy modulation amplitude can be
estimated as

η2
s = K2

1 [JJ]2
L2

u1

γ4σ2
L

PL

P0
, (16)

where P0 = IAmc2/e ≈ 8.7 GW. Using the one-
dimensional FEL theory, we find that the Fourier compo-
nent of the shot-noise-induced energy modulation is

η±
n (Δν) =

1
8γ3

I

IA

(
λu1K1[JJ]

σx

)2

N2
u1f(ν̄)

× 1
Ne

Ne∑
j=1

ei(±1+Δν)θj , (17)

where ν̄ = πΔνNu1 is the scaled detune in the first undu-
lator with Nu1 period, and

f(ν̄) =
[
e−iν̄ sin(ν̄)/ν̄ − 1

iν̄

]
(18)

describes the energy modulation bandwidth due to the shot
noise with a relative bandwidth given by Δνm = 1/Nu1

for Nu1 � 1. Inserting Eq. (16) and (17) into Eq. (15), we
obtain finally

(
Pm

n

Ps

)
h

=h2 λu1Nu1reσ
2
L

8σ4
x

K2
1 [JJ]2

1 + K2
1/2

(
mc2/e

)
I

PL

=h2

(
Pm

n

PL

)
1

. (19)

Thus, the effective modulator noise is

P m
n =

λuNu1reσ
2
L

8σ4
x

K2
1 [JJ]2

1 + K2
1/2

mc2

e
I . (20)

For efficient laser-beam interaction in the modula-
tor, the laser spot size is usually chosen to be σL =√

λ1λu1Nu1/8π (i.e., the Rayleigh length is one half the
undulator length with the laser waist located at the mid-
dle of the undulator). When the electron beam matches the

laser spot (i.e., σx ≈ σL), we have

Pm
n ≈λu1Nu1re

8σ2
x

K2
1 [JJ]2

1 + K2
1/2

mc2

e
I (21)

≈πre

λ1

mc2

e
I . (22)

Equation (21) can be shown to be the spontaneous undula-
tor radiation in the forward direction (within a solid angle
λ2

1/(2πσ2
x) and a full bandwidth ω1/Nu1). Equation (22)

holds for K2
1 � 1 and can be used for a quick estimation

of modulator noise power. If the modulator length is much
shorter than two power gain lengths, then the modulator
noise power is much smaller than the usual SASE noise
power as discussed in the introduction.

As shown in Eq. (11), the density-modulated beam gen-
erates the same shot noise bunching. The additional radia-
tor noise-to-signal ratio can be estimated as

(
P r

n

Ps

)
h

=
Δωr

n〈|br
ν |2〉

Δωsb2
h

=
Δωr

n/Ne

ΔωsJ2
h(hDηs)e−h2D2σ2

η
,

(23)
where Δωr

n = Δωr = Δνrωh is the noise bandwidth in
the radiator. If the radiator is also a low-gain device, then
Δνr ≈ 1/Nu2. If the radiator is a high-gain device, then
Δνr ≈ 2ρ. In either case we can write

(
P r

n

Ps

)
h

=
1/Nlc

b2
h

=
1/Nlc

J2
h(hDηs)e−h2D2σ2

η
, (24)

where Nlc = Nelc/lb is the number of electrons within
the radiator coherence length lc = λh/(Δνr). Note that
the radiator noise-to-signal ratio is independent of the sig-
nal laser power PL, but depends strongly on the harmonic
bunching strength. This has implications on different de-
signs of HC FELs to be discussed below.

NUMERICAL EXAMPLES AND
DISCUSSIONS

Equations (20), (22), and (24) are the main results of
this paper and may be used to estimate the shot-noise-to-
signal ratio of a HC FEL using a high-power seed laser
in a short modulator. Let us take some numerical exam-
ples to illustrate the significance of various noise contri-
butions. Consider the BESSY HC FEL design at the final
radiation wavelength λf = 1.24 nm [3]. For I = 1.75 kA
and λ1 = 297.50 nm, the modulator noise power according
to Eq. (22) is 26 W. If the laser power is 100 MW, then the
modulator noise-to-signal ratio at the final wavelength after
the total harmonic number Nh = 297.50/1.24 = 240 is

(
Pm

n

Ps

)
Nh

= N2
h × 26

100 × 106
≈ 1.5% . (25)

Thus, the modulator noise contribution is noticeable but
still small. In passing, we note the bandwidth of the modu-
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lator noise is about ω1/Nu1, hence the final relative band-
width of the first-stage modulator noise is

Δωm
n

ωf
=

1
NhNu1

. (26)

This may still be a small relative bandwidth than a SASE
FEL at 1 nm. For example, , Nh = 240, Nu1 = 18 in the
BESSY FEL, and Δωm

n /ωf ∼ 2× 10−4. Thus, even when
the final noise level due to the first modulator is compa-
rable to the signal strength, the temporal coherence of the
HC FEL is still improved as any noisy structure within the
slippage length λ1Nu1 of the first modulator is naturally
smoothed. This noise filtering effect was observed in the
LUX HC FEL simulations [11].

Let us now consider the radiator noise. First, we take
I = 1.75 kA, Nu2 = 40, and λh = 297.50/5 = 59.50 nm,
then we have Nlc = NeNu2λh/lb ∼ 108 in Eq. (24). The
BESSY FEL employs a fresh bunch approach that shifts
the output radiation to a fresh part of the bunch for the
next-stage interaction and hence allows for a large energy
modulation to be induced in the part of the electron bunch
that overlaps with a very short laser signal [12]. In this
approach, the harmonic bunching is usually maximized by
choosing D ∼ 1/ηs. If hDση � 1, we have b2

h ∼ 0.1.
The increase of the energy spread due to the large energy
modulation is not an issue as the next stage interaction oc-
curs at a fresh part of the bunch with the same initial energy
spread. In this case, the radiator noise-to-signal ratio given
by Eq. (24) is extremely small, at the 10−7 level. Even af-
ter another harmonic conversion factor of 48 (from the ra-
diator wavelength λh = 59.50 nm to the final wavelength
λf = 1.24 nm), the contribution from the radiator noise is
still small.

Nevertheless, the fresh bunch technique requires a tight
timing control between the short laser pulse and the elec-
tron bunch. In addition, experiments demanding most pho-
tons in a narrow bandwidth may benefit from using a laser
pulse longer than the electron bunch length to seed the
whole bunch. In this case, the induced energy modula-
tion must be controlled to a small level in order not to de-
grade the beam energy spread (i.e., ηs < ση). In view
of Eq. (10), the harmonic bunching cannot be maximized
as hDηs < hDση < 1, then the radiator noise-to-signal
ratio can increase dramatically. For example, in the whole-
bunch seeding example described in Ref. [1], the second-
harmonic bunching at the radiation wavelength 130 nm is
only b2

2 ∼ 0.25 × 10−4 in order to avoid a significant in-
crease in the energy spread. Thus, the radiator noise-to-
signal ratio given by Eq. (24) can be much larger (∼ 10−3).
An additional harmonic conversion factor of 16 (to the fi-
nal wavelength at 8 nm) will amplify this radiator noise-to-
signal ratio to 25%. Therefore, the shot noise contribution,
especially in the radiator section, may limit the temporal
coherence of such a harmonic cascade.
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