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Abstract

The quasi-stationary state characterizing the saturation
of a single-pass free-electron laser is governed by the
Vlasov equation obtained by performing the continuum
limit of the Colson-Bonifacio model. By means of a
statistical treatment, this approach allows to predict ana-
lytically the saturated laser intensity as well as the final
electron-beam energy distribution. In this paper we con-
sider the case of coherent harmonic generation obtained
from a seeded free-electron laser and present predictions
for the first stage of the project FERMI@Elettra project at
Sincrotrone Trieste.

INTRODUCTION

In a single-pass FEL, the physical mechanism respon-
sible for the light emission and amplification is the inter-
action between a relativistic electron beam, a magneto-
static periodic field generated by an undulator and an op-
tical wave co-propagating with electrons. Two different
schemes can be distinguished, depending on the origin of
the optical wave which is used to initiate the process. In
the SASE configuration, the initial seed is provided by the
spontaneous emission of the electron beam which is forced
by the undulator field to follow a curved trajectory. The
seed is then amplified all along the undulator until the laser
effect is reached. The SASE radiation produces tunable
signal at short (x-ray) wavelengths with several GW peak
power and excellent spatial mode. An alternate approach
to SASE is Coherent Harmonic Generation (CHG) [1],
which is capable of producing temporally coherent pulses.
A schematic layout of CHG is shown in Figure 1.

In this case, the initial seed is produced by an external
light source, e.g. a laser. The light-electron interaction
in a short undulator, called modulator, imposes an energy
modulation on the electron beam. The modulator is tuned
to the seed wavelength λ. The energy modulation is then
converted into a spatial density modulation as the electron
beam transverses a magnetic dispersion. Figure 2 shows
the evolution of the electron-beam phase space (i.e. energy
vs. electrons’ phase in the undulator plus radiator field)
from the entrance of the modulator to the exit of the dis-
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Figure 1: Schematic layout of the CHG scheme.

persive section. Finally, in a second undulator, called radi-
ator and tuned at the n-th harmonic of the seed frequency,
the micro-bunched electron beam emits coherent radiation
at the harmonic wavelength λ/n. Such a radiation is then
amplified until saturation is reached.

Importantly, it shall be noticed that Single-pass FELs
represent an example of systems with long-range interac-
tions [2]. When long-range forces are to be considered,
a global network of connections between individual con-
stituting elements is active, and mean − field effects are
dominant. Surprisingly, within the realm of long range in-
teracting systems, a wide number of striking phenomena
appear including ensemble inequivalence, negative specific
heat and emergence of Quasi–Stationary States (QSS), i.e.,
long–living states where the system gets eventually trapped
before relaxing to its final statistical equilibrium. This lat-
ter remarkable non equilibrium feature is also reported for
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Figure 2: Electron-beam phase space at the entrance a) and
at the exit b) of the modulator; c) phase space at the exit
of the dispersive section. In a), the thickness of the distri-
bution corresponds to the (initial) incoherent energy spread
of the electron beam. In c) the gap between the boundaries
of the separatrix corresponds to the energy modulation in-
duced by the seed-electron interaction (see Figure 1).
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FELs, where it plays a central role, being the only state
experimentally accessible in real devices. In this respect,
FELs provide a general experimental ground to investigate
the universal characteristics of systems with long range in-
teractions.

Motivated by this analogy, we shall apply a maximum
entropy principle, inspired to Lynden-Bell’s theory of “vi-
olent relaxation” [3]–[6] for the Vlasov equation and an-
alytically predict the characteristics of the laser signal at
saturation. More specifically, the above theoretical inter-
pretative framework will enable us to estimate the expected
intensity for the case of FERMI@Elettra [7], a future user-
facility based on CHG, without resorting to direct numeri-
cal simulations. Our results will be shown to correlate well
with Genesis-based [8] estimates.

FROM THE MEAN-FIELD MODEL TO
THE LYNDEN–BELL PREDICTION

In this section we will introduce the model that is cus-
tomarily employed to investigate the time evolution of a
single-pass FEL, both in SASE and CHG configurations.
By putting forward the hypothesis of one-dimensional
(longitudinal) motion and monochromatic radiation, the
steady-state dynamics of a single-pass FEL is described by
the following set of equations:

dθj

dz̄
= pj , (1)

dpj

dz̄
= −Aeiθj − A∗e−iθj , (2)

dA

dz̄
= iδA +

1
N

∑

j

e−iθj , (3)

where z̄ = 2kuρzγ2
r/〈γ0〉2 is the re-scaled longitudi-

nal coordinate, which plays the role of time. Here, ρ =
(awωp/4cku)2/3/γr is the so-called Pierce parameter, γr

the resonant energy, 〈γ0〉 the mean energy of the electrons
at the undulator’s entrance, ku the wave vector of the undu-
lator, ωp = (e2n̄/mε0)1/2 the plasma frequency, n̄ being
the electron number density, c the speed of light, e and m
respectively the charge and mass of one electron. Further,
aw = eBw/(kumc2), where Bw is the rms undulator field.
Introducing the wavenumber k of the FEL radiation, the
phase θ is defined by θ = (k+ku)z−2δρkuzγ2

r/〈γ0〉2; its
conjugate momentum reads p = (γ − 〈γ0〉)/(ρ〈γ0〉). The
complex amplitude A = Ax + iAy represents the scaled
field, transversal to z. Finally, the detuning parameter is
given by δ = (〈γ0〉2 − γ2

r )/(2ργ2
r ), and measures the av-

erage relative deviation from the resonance condition. The
above system of equations (N being the number of elec-
trons) can be deduced by the Hamiltonian:

H =
N∑

j=1

p2
j

2
− δI + 2

√
I

N

N∑

j=1

sin(θj − ϕ), (4)

where the intensity I and the phase ϕ of the wave are de-
fined by A =

√
I/N exp(−iϕ). Here, the canonically

conjugated variables are (pj , θj) for 1 ≤ j ≤ N and
(I, ϕ). Besides the “energy” H , the total momentum P =∑

j pj +I is also a conserved quantity. Let us finally define
the bunching parameter as b(t) =

∑
exp(iθi(t))/N :=

〈exp(iθ(t))〉. The latter provides a quantitative measure of
the degree of spatial compactness of the particles distribu-
tion.

Numerical simulations based on the above system of
equations show that the amplification of the wave occurs
in several subsequent steps. First, an initial exponential
growth takes place, which is successfully captured by a lin-
ear analysis. Then, as previously anticipated, the system
attains a QSS, where the wave intensity displays oscilla-
tions around a well-defined plateau. As predicted by the
Boltzmann-Gibbs statistics, for longer times a slow evolu-
tion toward the final equilibrium is found. The process is
driven by granularity and the relaxation time diverges with
the system size N . Hence, due to the constraint imposed
by the typical length of an undulator, the QSS is the only
regime experimentally accessible in the case of single-pass
FELs.

When performing the thermodynamics limit, i.e., N →
∞, one gets to the following Vlasov–wave picture:

∂f

∂z̄
= −p

∂f

∂θ
+ 2(Ax cos θ − Ay sin θ)

∂f

∂p
, (5)

dAx

dz̄
= −δAy +

∫
f cos θ dθ dp , (6)

dAy

dz̄
= δAx −

∫
f sin θ dθ dp . (7)

which can be shown to govern the initial growth and re-
laxation towards the QSS. The latter conserves the pseudo-
energy per particle

h(f, A) =
∫

p2

2
f(θ, p) dθ dp − δ(A2

x + A2
y) +

∫
(Ax sin θ + Ay cos θ)f(θ, p) dθ dp (8)

and the momentum per particle

σ(f, A) =
∫

pf(θ, p) dθ dp + (A2
x + A2

y). (9)

In ref. [4] it was shown that the average statistical param-
eters of the laser (intensity and the bunching in the QSS) are
accurately predicted by a statistical mechanics treatment
of the Vlasov equation, according to prescriptions of the
seminal work by Lynden-Bell [5]. The analysis developed
in [4] was limited to the case of spatially homogeneous ini-
tial conditions (i.e., initial zero bunching). In [9], we ex-
tended the analysis by including initially bunched distribu-
tions. In the remaining part of this section we will review
the foundation of the analytical method and presented se-
lect numerical results.
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The basic idea of Lynden–Bell “violent relaxation” the-
ory [4, 6] is to coarse-grain the microscopic single-particle
distribution function f(θ, p, t), which is filamented and
stirred by the dynamics. An entropy is then associated to
the coarse-grained function f̄ , which essentially counts the
number of microscopic configurations giving rise to it.

Starting with an initial centered water-bag distribution,
which corresponds to a rectangle uniformly occupied in the
phase space (θ, p) with −p0 < p < p0 and −θ0 < θ < θ0,
the normalization condition reads f0 = 1/(4θ0p0).

The entropy can be expressed as [5, 6]:

s(f̄) = −
∫ [

f̄

f0
ln

f̄

f0
+

(
1 − f̄

f0

)
ln

(
1 − f̄

f0

)]
dθ dp.

(10)
The equilibrium is computed by maximizing this en-

tropy:
max

f̄ ,Ax,Ay

(
s(f̄)

)
, (11)

while imposing the dynamical constraints:

h(f̄ , Ax, Ay) = h0, (12)

σ(f̄ , Ax, Ay) = σ0, (13)∫
f(θ, p) dθ dp = 1, (14)

where h0 and σ0 stand, respectively, for the energy and
momentum (per particle) of the system. Performing the an-
alytical calculation and introducing the rescaled Lagrange
multipliers for the energy, momentum and normalization
constraints (β/f0, λ/f0 and μ/f0) one obtains the typical
Fermi-Dirac distribution:

f̄ = f0
e−β(p2/2+2A sin θ)−λp−μ

1 + e−β(p2/2+2A sin θ)−λp−μ
(15)

A =
√

A2
x + A2

y =
β

βδ − λ

∫
sin(θ)f̄(θ, p) dθ dp.

The three constraints (12)–(14) are then imposed by
making use of the above expression for f(θ, p) and A, and
the obtained equations numerically solved to provide an es-
timate of the multipliers as functions of energy h0 and mo-
mentum σ0 of the system. Ones β, γ, μ are calculated,
one can in turn estimate the value of the intensity I and the
bunching parameter b of the QSS.

To validate our findings, we performed numerical simu-
lation for a water-bag initial distribution as specified above,
where θ0 < π. Further, label with |b0| the initial bunching,
i.e., the positive quantity given by |b0| = |〈exp(iθ(0))〉|.
Numerical calculations are performed based on the discrete
system (1–3). In Figure 3 the average intensity at saturation
is reported as function of |b0|, for different values of the
initial kinetic energy. Results are compared with the an-
alytical estimate obtained above. Analogous plots for the
average value of the bunching parameter at saturation are

reported in Figure 4. A direct inspection of the figures con-
firms the adequacy of the proposed theoretical framework:
predictions based on the Vlasov theory correlate well with
numerical curves. In the next section, starting from these
results, we will elaborate a strategy to gain insight into the
non–linear evolution of a CGH scheme without resorting to
direct numerical investigations. In particular, we will focus
on the case of the FERMI@Elettra project.
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Figure 3: Average intensity Ī at undulator exit as func-
tion of the initial bunching |b0| for different values of the
initial average kinetic energy, respectively a) h0 = 0.01
b) h0 = 0.16 c) h0 = 0.21 d) h0 = 0.315). The continuous
lines correspond to the Lynden–Bell theoretical prediction,
while symbols represent numerical results obtained aver-
aging intensity fluctuations in the saturated regime over ten
different realizations of the initial conditions resting on the
same values of θ0 and p0.
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Figure 4: Average values of the bunching parameter | b̄0|
at the undulator exit as function of |b0|. Same choice of
parameters as in Figure 3.
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CHARACTERIZING THE SATURATION
OF CHG FELS

The seed-electron interaction in the first undulator of a
CHG scheme induces a coherent modulation, Δγ, of the
electron-beam energy, which superimposes to the initial in-
coherent energy spread σγ . Inside the dispersive section,
the energy modulation is converted into a spatial density
modulation. Performing a Fourier analysis of the spatial
beam distribution at the end of the dispersive section one
finds the following bunching parameters:

|b0| � Jn(n)/ exp(1/2), (16)

where Jn stands for the n-th order Bessel function 1.
On the other hand, the total energy spread σγ,tot at the

entrance of the second undulator reads:

σγ,tot =

√
σ2

γ +
(Δγ)2

2
� σγ

√
1 +

n2

2
, (17)

where n is the harmonic number. Moreover, in term of
the rescaled variables used in the formulation of the above
one-dimensional model, the associated energy profile can
be ideally schematized as a water-bag distribution, where

p0 =
σγ,tot

γρ
. (18)

Taking full advantage of the above theoretical analy-
sis, we are therefore in a position to quantify the saturated
(QSS) behaviour of a CHG device. In particular, we shall
focus on the case of the project FERMI@Elettra [7] and as-
sume the experimental setting relative to the output wave-
length 100 nm. In this case, n = 3 (i.e., the initial seed
wavelength is 100 nm), γ = 2348, σγ = 150 KeV and
ρ = 3 · 10−3. Direct numerical simulations are performed
using GENESIS [8], a three dimensional code that explic-
itly accounts for the coupling between the transverse and
longitudinal dimensions. Assuming a radiator length of 16
m, a horizontal and vertical (normalized) beam emittance
of 1.5 μ m and on optical waist of w � 300 μm, simula-
tions give an output power of about 3 GW.

Independently, one can calculated the value of |b 0| and
p0 by inserting the nominal values of the relevant param-
eters in equations 18 16. Then, Lynden–Bell theory en-
ables us to predict the QSS value for the intensity which
are shown to correlate extremely well with Genesis based
calculation, the disagreement being quantified in at most
10 % [9] .

CONCLUSIONS

The theoretical approach outlined in this paper consti-
tutes a novel strategy to predict the intensity at saturation

1Note that in deriving equation (16) an optimization scheme for the
bunching parameter has been put forward according to the standard ex-
perimental procedure. A detailed account on the approximations involved
is presented in [9] starting from the usual expression given in [1]

for a CHG setting, provided the value of the incoherent en-
ergy spread is assigned and without involving to direct nu-
merical investigations.

The short recipe goes as follows: by knowing σγ one
can calculate σγ,tot by means of eq.(17) and consequently
estimate both |b0| and p0, based on eqs.(16)–(18). The spa-
tial width, θ0, of the initial water-bag distribution (here
assumed to mimick the more natural Gaussian profile)
is eventually obtained upon inversion of relation |b 0| =
sin(θ0)/θ0. Once the values of θ0 and p0 are given, the the-
ory of the violent relaxation allows to quantitatively predict
the saturated state of the system.

Finally let us stress that the applicability of the method
we have developed is currently limited to situations in
which transverse effects are neglected. This in turn en-
tails the possibility of assuming the electron-beam geo-
metrical emittance smaller than the radiation wavelength,
the beam relative energy spread smaller than ρ and the
Rayleigh length of emitted radiation much longer than the
radiator length. These conditions apply for instance to the
case of the whole spectral range that is to be covered by the
FERMI@Elettra FEL (100-10 nm).
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