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Abstract

The free-electron laser (FEL) theory in the collective or
Raman regime relies on the unstable coupling between
the radiation and the negative-energy space-charge wave.
Due to the high density and low energy of electron beam
a focusing mechanism like an axial magnetic field is
usually required to guide the beam. It is found that the
wiggler has direct effect on the right and left waves and
the wiggler effect on their dispersion relations are of the
second order in the wiggler amplitude. Due to the fully
relativistic treatment the dispersion relation is to fourth
order in wiggler amplitude and it can be used to study
new couplings between the negative and positive-energy
space-charge waves as well as between the right and left
circularly polarized electromagnetic waves.

INTRODUCTION

Relativistic electron bean injected into an ionized
plasma channel ejects plasma electrons leaving a positive
ion core which attracts and confines the beam electron.
There are important applications in this subject such as
advanced accelerators [1] and free-electron lasers (FELSs)
[2,3]. lon-channel guiding as an alternative to the
conventional axial magnetic-filed guiding, was first
proposed for use in FELs by Takayama and Hiramatsu
[4]. Experimental results of a FEL with ion-channel
guiding have been reported by Ozaki at al. [5] Also, Yu et
al. [6] have reported that the combination of ion focusing
and beam conditioning would lead to high gain FEL
operation in the soft x-ray regime. Jha and Wurtele [7]
developed a three-dimensional code for FEL simulation
that allows for the effects of an ion channel. The
theoretical studies of this problem with a helical wiggler
are carried out in the low-gain [8] and high-gain [9,10]
regimes. In Ref 10, the relativistic Raman backscattering
theory is used to find the FEL dispersion relation with
ion-channel guiding, in the beam frame of electrons, with
the left circularly polarized backscattered wave neglected.
This DR was used to find the growth rate of the FEL
resonance due to the coupling of radiation with the slow
space-charge wave.

The purpose of the present investigation is to obtain the
dispersion relation (DR) for the interaction of all possible
waves in a relativistic electron bean that passes through a
one-dimensional helical wiggler magnetic field with ion-
channel guiding. The motion of a relativistic electron

* Electronic mail: behrouz@aut.ac.ir

FEL Theory

through the wiggler is analyzed. Three coupled equations
are derived and a formula for the general DR is obtained.

ELECTRON MOTION

Consider a relativistic electron moving along the z axis
of an idealized helical wiggler magnetic field described
by
B=8B,(kcosk,z+¥sink,z), (1)

where B, denotes the wiggler amplitude, and

w

k,, (: 27r/ ﬂw) is wiggler wave number. In the presence of

an ion channel, with its axis coincident with the wiggler
axis, the following transverse electrostatic field is acted
on the electron beam
E, :27reni(x§(+y§7), )
where n; is the number density of positive ions with
charge e. The steady-state motion of an electron in the
above field consists of an axis centred helical motion,
with radius R, =v,, /k,v , given by Eq. (16) with [8,11]
2
o= Q, kv 3)
w 2 227

oF kv
where Q,, =eB, [ymc , o] =2ﬂnie2/7m , m is the
electron rest mass, e is the magnitude of the charge of an
electron, and ¢ is the speed of light in vacuum. This
velocity is related to the axial velocity v, through

2 v v

yt=1-te @)
° c? P

Equation (4) is cubic in vHZ / ¢? and describes two classes

of trajectories propagating along the positive z axis of the

FEL.

DISPERSION RELATION

An analysis of the propagation of
electromagnetic/electrostatic waves in the electron beam
may be based on the continuity equation,

on

—+V-(nv)=0, 5
5 V) ()
the relativistic momentum equation

d

av___¢© E—va-E+lva, (6)
dt ymyg c? c
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and the wave equation

2

VX(VXE)+L6 E:i47zenv. (7)
¢ or* ot ?

Here n is the electron density, v is the electron velocity,

y is the Lorentz factor corresponding to v, E is the

electric field, and B is the magnetic field. With the

unperturbed electron density n, taken to be independent

of position and time and the self-fields of the unperturbed
state neglected, the electron and field variables may be
expressed in the form

n=ny+on, (8)
V=v,+Jv, 9
E=E,; +0E, (10)
B=B, +0B, (1D
R=R;+0R (12)

The linearized equations for the continuity equation, the
relativistic momentum equation, and the wave equation
may be derived as

%+nov~5V+VO-V5n=O, (13)
00
V+V0'V5V+5V’VV0=— ¢ |:5E—L2V0VO'5E
VoMo c

—Lv05v ‘E,; —L5VVO~Ei +l5v><BW +lv0 xoB
02 02 c c

2
_}/_g[Ei +1V0 xB, _Lz"ovo E; j(vo -5v):|, (14)
C

C C
0°SE 4
V><(V><5E)+L2 5 :iﬁ(&nvoﬂqoév). (15)
c” Ot ot ¢
By introducing a new set of basis vectors

e=(R+i§)/N2, & =(R-i§)/V2, and é=2, the
unperturbed magnetic field, electron density, and
transverse electrostatic field can be written as

B, = (Bw /N2 )exp(—isz)é + (BW /N2 )exp(isz)é* . (16)
Vo = (vw /ﬁ)exp(—isz)é + (vw/ﬁ)exp(isz)é*

+VHéZ ) (1 7)

E, = iN2 e n;R, ( exp(—ik,,z)é+exp(ik, z)e" ), (18)
The perturbed state is assumed to consist of a

longitudinal space-charge wave and right and left
circularly polarized electromagnetic waves, referred here
as radiation, with all perturbed waves propagating in the
positive z direction. Accordingly, solution of the system
of equations (13)-(15) may be assumed as
SV=0ve+6v, @ +6vye,,
SE=(27en, SRy +S5Ep e+(2zen,5R, +5E, )e"

+0E4¢€,,

SB=56Bpe+5B,¢e",

(19)

(20)
@1
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SR =G5Rye+5R, & (22)
on=rnexplilkz—wt)], (23)
Ovp =vgexpli(ky z—wt)], (24)
ov, =v, explilk, z—wt)], (25)

ov,and OF, are analogous to Sn; OE,, ORg,, and
OBy are analogous to ovy; JE;, OR;, and 0B, are

analogous to dv; ; the wave numbers are related to by

kp=k-k,, (26)
k; =k+k,. 27
The linearized wave equation yield
~ . - Vw -
(k,%CZ _Q;Z)ER :—4ﬂzea{n$+n0v,gj, (28)
(k2¢? -0 )E, = —4;riea{ﬁv—W+novL], (29)
V2
~0’E, =—4riealiiv +ny¥, ). (30)

Similarly, the linearized continuity and momentum
equations yield
ﬁ(w_kVH ): no k;z N

2 2 2 2
@y~ 1= | e g T
a)—kRvH 2¢ kWVH 2c

€2))

2 2 2 2
o] v, ;] v
+| - —+

M Ay [t (1
Yol

a)_kRV” 2¢c

v | kv s e v o= e vy o
-—— |- Ep - — Ep - Sk,
2¢c w YoMy 2c¢ YoMy x/Ec

(33)

2
Vi |~ v,V
_i(a)—kvu)ﬁz +° —lz E. + A H2
YoMy c YoMy x/Ec
VWVH

Kge v }E 4+ {— +M Y ]E
o \2¢ ! vomg | N2¢* @ 2 ‘
+i[[ a),»z 3 a)l»z j ViV _QW];

kv o—kgy J2er 2 K

+i a)i2 a)i2 VWVH + Q ~ 0
| — — — |V =YV,
kWVH a)—kLV” \/ECZ \/5

where

+

(34
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2 M 35)
o= 2
C
Ay =kie? —o0?, (36)
Ay =kie? —0?, (37)
1 2Vw!| Vw a)l vH
A, = wlw A0, 38
! (2]06‘[6‘ kwv” c WJ (38)
1 1 Vifv ?
Ay =| — |k, v, +Q,, )+ —= |y —| 2 ——
’ (ﬁJ ' (ﬁ] Vel ek
VI
——QWJ ) (39)
C

The electron density 7 may be eliminated in (30) by use
of (29) to obtain

X a— kV” ~
—1E

v, =—i

40
4reny “0)

with the use of Egs. (28)-(31) and (40), vy, v, and v,

may be eliminated in the three components of the
momentum equation (32)-(34) to obtain

lD,g +l//;§vf//c2JER +[l//2vvzv/chEL +[§R1vw/c

M S E, =0, (41)
W@(szv/cz)ER +lD2 +'//ZV»2v/CZJEL +[§L1VW/C
+M_VV3V/C3JEZ =0, (42)
2
§R2(V_WJER +81 [V—W] E, _‘0[‘90 +kv) {a)—[
c c o—kpv,
2 2
O I E 2, 43)
a)_kRV” 202

0 0 + + +
where Dp, Dy, Wi, Wi, M~, &piy Eros S0 S0

" are defined in the appendix. Here, Dg, DL0 ,and &

are the uncoupled dispersion relations, i.e., in the absence
of the wiggler, for the right and left circularly polarized
electromagnetic waves, and the space-charge wave,
respectively. Equations (41) and (42) show that the DR
for the right and left waves, alone, in the absence of the
other two waves, are

Dy =Dy +yilv2 fe?)=0. (44)
D, :D2+1//Z(v‘i/cz):0, (45)
which indicate that the wiggler has direct effect on the
right and left waves and the wiggler effect on their DRs
are of the second order in the wiggler amplitude. On the

other hand, Eq. (43) Shows that the DR for the space-
charge wave in the absence of the right and left wave is

£” =0, which indicates that the wiggler has no direct
effect on the space-charge wave. The reason is that the
transverse helical motion of electrons, due to the wiggler,
has no effect on the longitudinal oscillations of the space-
charge wave. Therefore, if the electromagnetic waves are
removed the wiggler effect on the space-charge wave will
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also be removed and the space-charge wave will be
unaffected by the wiggler in the absence of the transverse
electromagnetic waves.

The necessary and sufficient condition for a nontrivial
solution consists of the determinant of coefficients in Egs.
(41)-(43) equated to zero. Imposing this condition yields
the dispersion relation

2 2
ol £° +wkv|( /I ] Dy D, :_|:DR§L2
o—k;vy  @o—kyv
LY RY|
2

2 2
vy vie ||V _
{fu +M— j"‘DL $r2 [":Rl +M* — ]]_2 +{‘//L $r2
¢’ Jle

C

2 2

Ve - Vi -

(fu +M —Z]Jf‘//k sz[le +M+—2J+0’501//L‘//R
c c

2 2 4
'H//L‘//Ra)kv[ e Hv_ﬁ
o—kyvg o-kgv)|c

Equation (46) is the DR for coupled electrostatic and
electromagnetic waves propagating along a relativistic
electron beam in the presence of a wiggler magnetic field
and an axial guide magnetic field. A numerical analysis of
the general dispersion relation can be used to study
interactions among all possible waves. In group II orbits,
with relatively large wiggler induced velocities, new
couplings between the negative and positive-energy
space-charge waves as well as between the right and left
circularly polarized electromagnetic waves are expected
to be found. These instabilities are distinct from the usual
FEL resonance.

(46)

APPENDIX: DEFINITION OF
QUANTITIES

The following quantities are used in equations (41)-(43)
2

)
Dg :(a)_kRV -

Ap + @02 (0—kpv ,
a)—kRv”J R »( RY)

2

0 @;
DY =| @~k -—2—
 — kLVH

+ 1 a),z a),2 2 2
R=|—= - T yok, v |4 — 00, |,
L (2]{{(0_1%‘}' ko YoruwV |4 »

+ 1 w} w} o’ 5
el TR Ly 2k, |4
Vi [2]{[@—1@\/ kv o=k R

]AL +a(0-ky),

2 2
M* =[a)kcJ A *2y0k v |,
22 o—kyy, -k

2
® @; 2 Y
=| = | kq| 0—kpv ———— |-0? L
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2 ok,

c
kaH

2
10} @; A
| Lk kv ——2L |2 L
i ( ,—2][ C[ LY CU—kLVJ P,

2
+{icz+MJ(w—kV) ;

C
kv

1 w? w’c ?
Epy =| —= || —4g| ————+k,c———
R2 \/E k ka kwsz a)_kRVH

2
+ a)p(ch - a)vl/c)],

2 2 2

£ :(lj P R A
2 kWC kaH w_kLVH

+ a)f,(kLc - a)v/c)] ,

&' = (=)’ —o} /7] .
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