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Abstract

We present a one-dimensional time-dependent analysis
and simulation of Smith-Purcell (SP) backward wave os-
cillator (BWO) taking end reflections and attenuation into
account. In the linear regime, we obtain an analytic solu-
tion and calculate the start current. The dependence of start
current on end reflections is studied taking the attenuation
due to finite conductivity into account.

INTRODUCTION

The Smith-Purcell (SP) free-electron laser in the tera-
hertz (THz) regime using a low energy electron beam is
a backward wave oscillator (BWO) [1,2]. Previous anal-
yses of SP-BWO [1-3] have ignored the reflection at the
ends of the grating. However, there will in general be some
reflection at the end of the grating due to discontinuity in
the medium. One can, if desired, also add external mir-
rors to enhance reflection. In the presence of reflection,
the start current, which is defined as the minimum value
of the electron beam current needed to produce coherent
electromagnetic oscillations, can be reduced. In this pa-
per, we present a self consistent nonlinear analysis of SP-
BWO including end reflections and attenuation. We set up
Maxwell-Lorentz equations equations and develop a com-
puter code to solve these equations. We present the re-
sults of numerical simulation and discuss the evolution of
power. In the linear regime, we solve the coupled Maxwell-
Lorentz equations analytically and calculate the start cur-
rent taking end reflection and attenuation into account.

MAXWELL-LORENTZ EQUATIONS

In a SP-BWO, the electron beam interacts with the back-
ward surface wave co-propagating with the electron beam.
We assume that the electron beam is in the form of a
thin sheet moving along the z-axis above a metal grating
with rectangular grooves, the direction of the grooves is
along the y-axis and the outward normal to the grating sur-
face is along the x-axis. The plane of the sheet electron
beam is at x = 0, and the top surface of the grating is
at x = −b. We have earlier studied the interaction be-
tween the electron beam and the backward surface mode
using Maxwell-Lorentz equations where we ignored the re-
flection at the end of the grating [2]. The backward sur-
face mode supported by the grating is a linear combina-
tion of infinite number of Floquet-Bloch harmonics hav-
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ing the z-component of propagation vectors differing from
each other by an integral multiple of kg , where kg = 2π/λg
and λg is the period of the grating. The y-component Hy

of the magnetic field of the backward surface mode can be
written as

∑
An exp(ik0z + inkgz − Γnx − iωt), where

the summation is implied over all n from -∞ to +∞ [2].
Here, ω is the frequency, k0 is the propagation vector of

the backward surface mode, Γn =
√

(k0 + nkg)
2 − ω2/c2

and c is the speed of light. The zeroth-order component
of this mode has the longitudinal electric field given by
E−(z, t) exp (ik0z − iωt) at x = 0. The amplitude of
all other components of the backward surface mode have
to maintain a fixed ratio with the amplitude of the zeroth-
order component such that the electromagnetic field satis-
fies the required boundary conditions. Hence, as the zeroth-
order component of the surface mode evolves due to inter-
action with co-propagating electron beam, the amplitude
of all other components also evolve proportionately. One
can calculate the group velocity, which is dω/dk, from
the dispersion relation of the backward surface mode. For
low energy electron beam, the group velocity of the co-
propagating surface mode having ω/k0 = βc is along the
negative z-axis [1,2]. Let us denoted the magnitude of the
group velocity by vg. Here, βc is the velocity of electrons.

For a grating with rectangular grooves considered here,
a wave going along the positive z-axis will see the same
boundary as the wave going along the negative z-axis.
Hence, if we construct a mode having Hy given by∑
An exp(−ik0z − inkgz − Γnx − iωt), it will satisfy

the Maxwell equations and the required boundary condi-
tion for the reflection grating. This is actually the for-
ward surface mode supported by the grating. This has
the propagation vector -k0 and the group velocity vg along
the positive z-axis. Hence, the grating supports forward
as well as backward surface mode. However, none of
the components of the forward surface mode co-propagate
with the electron beam. Consequently, the forward surface
mode does not interact with the electron beam. It how-
ever arises due to reflection of the backward wave at the
end of the grating. As the backward surface mode extracts
energy from the electron beam and grows, it gets reflected
at the end to the forward surface mode and consequently
the forward surface mode also grows. Let us denote the
zeroth-order component of the forward surface mode as
E+(z, t) exp(−ik0z − iωt) at the location of sheet elec-
tron beam.

In our previous work [2], we had set up Maxwell equa-
tion for the backward wave, which is coupled to Lorentz
equations for the beam dynamics. We will now add the
Maxwell equation for the forward wave to this set of equa-
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tions. We will be following notations used in Ref. 2. The
energy flows along the negative z-axis for the backward
wave and hence, it gets attenuated along the negative z-
axis. Similarly, for the forward wave, the energy flows
along the positive z-axis and it gets attenuated along the
positive z-axis. The complex attenuation coefficient α for
the backward wave supported by a rectangular reflection
grating can be obtained as per the prescription given in
Ref. 3. For the forward wave, the complex attenuation co-
efficient will be simply −α. Taking the attenuation into ac-
count, the equation for the evolution of the amplitude E+

of the forward wave becomes

∂E+

∂z
+

1
vg

∂E+

∂t
= −αE+. (1)

The equation for the evolution of the amplitude E− of the
backward wave as derived earlier is given by [2,4]

∂E−
∂z

− 1
vg

∂E−
∂t

=
IZ0χ

2βγΔy
e−2Γ0b〈e−iψ〉 + αE−, (2)

where I is the electron beam current, Z0 = 377 Ω is the
characteristic impedence of free space, χ is the residue
of the singularity associated with the surface mode as de-
fined in Ref. 2, γ is the energy of the electron beam in
unit of rest energy, ψ is the electron phase and Δy is the
width of the sheet electron beam in the y-direction. Both
these equations are coupled through boundary condition
at the end of the grating. Let ρ0 and ρL be the com-
plex reflection coefficient at the entrance and exit end of
the grating. The boundary conditions will then given by
E+(z = 0) = ρ0E−(z = 0), and E−(z = L)eik0L =
ρLE+(z = L)e−ik0L, where L is the length of the grat-
ing. The entrance and the exit of the grating are at z = 0
and z = L respectively.

In order to further simplify the analysis, we define a new
amplitude of the forward wave given byE+ = −ρ0Ẽ+. The
boundary conditions, in term of this definition can then be
written as Ẽ+(z = 0) = −E(z = 0) and E−(z = L) =
Re−i2k0LẼ+(Z = L), where R = −ρ0ρL. As discussed
in Ref. 2, we can define dimensionless variables and make
a transformation from (z, t) to (ζ, τ ) to simplify the anal-
ysis. Here, ζ = z/L is the normalised length and τ is the
dimensionless time defined in Ref. 2. We define dimen-
sionless amplitude of the forward and the backward wave
denoted by E+ and E− respectively as

E± =
4π
IAZ0

k0L
2

β2γ3
Ẽ± , (3)

where IA = 17 kA is the Alfvén current and Ẽ− = E−.
After making these transformations, the equation for evo-
lution of E+ and E− are given by

∂E−
∂τ

− ∂E−
∂ζ

= −J 〈e−iψ〉 − αLE−, (4)

∂E+

∂τ
+ d1

∂E+

∂ζ
= −d1αLE+, (5)

where d1 = (vp + vg)/(vp − vg). The boundary conditions
now become E+(ζ = 0) = −E−(ζ = 0) and E−(ζ = 1) =
Re−i2k0LE+(ζ = 1). These equations are coupled to the
electron beam dynamics equations

∂ηi
∂ζ

= (E− + Esc)eiψi + c.c., (6)

∂ψi
∂ζ

= ηi, (7)

where the Esc is the dimensionless longitudinal electric
field due to space charge given by Esc = iQ〈e−iψ〉, and
Q = (J /χL)(χ1 − e2Γ0b). The χ1-parameter appears
in the analysis of singularity associated with the surface
mode and can be calculated as per prescription discussed
in Ref. 2. Here the subscript i stands for ith electron and
ηi = (γi − γ)/γ is the relative energy deviation of the ith

electron. Eqs. (4-7) along with the boundary conditions
form the complete set of differential equations needed to
describe the one-dimensional time-dependent behavior of
SP-BWO with end reflections and attenuation. In the next
section, we discuss the analytic solution of these equations
in the linear regime.

LINEAR ANALYSIS

We can linearize Eqs. (4-7) around an equilibrium solu-
tion and perform a stability analysis to find out the param-
eter regime in which the instability for exchange of energy
from electron beam to electromagnetic oscillation can be
excited. For simplicity, let us assume that the injected beam
is monoenergetic, and ηi = 0 for all the electrons at ζ = 0.
Further, we assume that the injected beam is unbunched,
i.e., 〈e−iψ0〉 = 0, where ψ0,i is the phase of the ith particle
at ζ = 0. An equilibrium solution of the system of Eqs. (4-
7) is obviously E− = 0, E+ = 0, ηi = 0, and ψi = ψ0,i. Let
us define the perturbative solution by E− = ε̃−, E+ = ε̃+,
ηi = δηi, and ψi = ψ0,i + δψi. We introduce the follow-
ing collective variables as done by Bonifacio et al. [5] for
conventional FELs:

x̃ = 〈δψe−iψ0〉, ỹ = 〈δηe−iψ0〉. (8)

In terms of these variables, Eqs. (4-7) can be linearized and
written as

∂ε̃−
∂τ

− ∂ε̃−
∂ζ

= iJ x̃− αLε̃−, (9)

∂ε̃+
∂τ

+ d1
∂ε̃+
∂ζ

= −d1αLε̃+, (10)

∂x̃

∂ζ
= ỹ, (11)

∂ỹ

∂ζ
= ε̃− +Qx̃. (12)

The boundary conditions for these equations are: (1) x̃ =
0 at ζ = 0 at all τ since the injected beam has no phase
modulation, i.e., it is injected unbunched. (2) ỹ = 0 at ζ =
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0 at all τ since the injected beam has no energy modulation,
i.e., it is injected monoenergetically. (3) ε̃+ = −ε̃− at ζ =
0 for all τ , and ε̃− = Re−i2k0Lε̃+ at ζ = 1 for all τ .
Assuming a solution of the type eντ , we can find out the
growth rate ν for the above linearised equations with the
boundary conditions. In order to find out the growth rate ν,
one has to first solve the following cubic equation

κ3 − (ν + αL)κ2 −Qκ+ νQ+ iJ = 0. (13)

Then, the three roots of the above cubic equationκ 1, κ2 and
κ3 should satisfy the following transcendental equation

Re−αLe−i(2k0L−i ν
d1

)[(κ2
1 −Q)(κ2 − κ3)

+(κ2
2 −Q)(κ3 − κ1) + (κ2

3 −Q)(κ1 − κ2)]
+(κ2

1 −Q)(κ2 − κ3)eκ1 + (κ2
2 −Q)(κ3 − κ1)eκ2

+(κ2
3 −Q)(κ1 − κ2)eκ3 = 0. (14)

By solving the above two equations, we can find out the
minimum value of J , called the dimensionless start current
Js for a givenQ, R, α and L, for which the real part of the
complex growth rate ν is positive.
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Figure 1: Variation in the dimensionless start current with
ξ for R = 0.8 (solid curve) and R = 0 (dashed curve).

Next, we use Eqs. (13-14) for the calculation of start cur-
rent. In a companion paper [4], we have optimized the pa-
rameters corresponding to Dartmouth experiment [6] tak-
ing attenuation into account, but excluding end reflection.
We use those parameters for calculation of start current
here. For the grating, we use groove depth d = 150 μm,
groove width w = 110 μm, period λg = 173 μm and length
L = 12.7 mm. For the 35 keV sheet electron beam, we use
b = 10 μm. From our calculation [2], for these param-
eters, we obtain the free-space wavelength λ = 819 μm,
χ = 120 per cm, χ1 = 3.9, αL = 0.94(1 − i) and vg/c =
0.0925. Note that in Eq. (14), for a given grating length,
when we change the electron beam energy, the value of
k0 will change, which will change the phase factor term
e−2ik0L. Let us define ξ = mod(k0L, π). Hence, for a

given set of parameters, if we make a slight change in the
electron beam energy, the value of ξ changes accordingly
and affects the value of start current. For our parameters,Q
is very small, and we take Q = 0. Figure 1 shows the vari-
ation of dimensionless start current Js with ξ for R = 0.8.
We find that that the value of Js oscillates between 11.1
and 14.2. Note that the start current density corresponding
to J = 11.1 is 4.7 mA/mm. The value of Js is 12.7, when
we neglect end reflection. When the attenuation is smaller,
the effect of end reflection is more pronounced.

NUMERICAL SIMULATION

For numerically solving Eqs. (4-7), we use the approach
used by Ginzburg et al. [7] and later also by Levush
et al. [8] for BWO. The electron dynamics equations for
a given field distribution along the interaction region are
solved by the predictor-corrector method. Then, knowing
the modified electron distribution in phase space, the field
distribution at the next time step is obtained by solving the
partial differential equations (Eqs. 4-5) by the finite differ-
ence method. The method is stable for Δτ < Δζ for the
backward wave and for Δτ < (1/d1)Δζ for the forward
wave. Here, Δτ and Δζ are the step sizes in τ and ζ re-
spectively, used in the finite difference method.

For initializing the electron beam in phase space, we
simulate the shot noise using the algorithm given by Pen-
man and McNeil [9], which is commonly used in FEL
codes.

We performed a couple of tests on the code we devel-
oped. We first checked for the convergence of the solution
by increasing the number of particles and also by reducing
the step size. Based on this convergence test, we chose the
number of particles to be used in the simulation as 1024 and
the step sizes as Δτ = 0.01 and Δζ = 0.02. We also con-
firmed that the energy conservation equation along with the
damping term due to attenuation is satisfied in the code at
each integration step.

Figure 2 shows the evolution of power in the backward
wave at the entrance of the grating for J = 11.6 and J =
10.6. The parameters used in the calculation are same as
mentioned in the last section. We have chosen ξ = 2.5 for
which Js is minimum as shown in Fig. 1. For these pa-
rameters, Js = 11.1 and hence for the case J = 10.6, there
is no build-up of power, whereas for the case J = 11.6,
we find that the power grows exponentially and saturates.
Note that I/Δy = 4.9 mA/mm for J = 11.6. After satura-
tion, the variation of the amplitude of electric field for the
forward as well as the backward wave along the length of
the grating is shown in Fig. 3.

Let us now discuss the calculation of outcoupled power.
Power in the backward and the forward surface mode de-
noted by P− and P+ respectively can be obtained by the
following expression

P

Δy
= 2

βγ

Z0χ

(
mc2β3γ3

ek0L2

)2

e2Γ0b|E|2, (15)
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Figure 2: Evolution of power in the backward wave at the
entrance of the undulator for J = 11.6 (solid curve), and J
= 10.6 (dashed curve). We have used R = 0.8 and ξ = 2.5
in the calculation.
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Figure 3: Variation of the amplitide |E−| of the backward
wave (solid curve) and the amplitude |E+| of the forward
wave (dashed curve) along the length of the grating for J
= 11.6. Other parameters are same as those used in Fig. 2.

where P = P− for E = E− and P = P+ for E = ρ0E+. The
outcoupled power P0 at the entrance of the grating is given
by P−(z = 0) − P+(z = 0) and at the exit, the outcou-
pled power P1 is given by P+(z = L) − P−(z = L). If
we assume ρL = 1, the power will be outcoupled only at
the entrance of the grating. For the case of Fig. 3, the out-
coupled power is calculated to be 54 mW for Δy = 1 mm.
The total power in the electron beam for this case is 171.5
W for 35 keV, 4.9 mA electron beam current. Hence, the
overall efficiency is only 0.03%. Such a low efficiency is
there beacuse we have chosen the electron beam current
very close to the start current and also the heat loss occur-
ring in the grating due to attenuation deteriorates the effi-
ciency. We have checked that the efficiency is improved

at higher value of beam current. Our emphasis here is to
show that including reflection, it is possible to reduce the
start current surface density to as low as 4.7 mA/mm.

In our calculation, we have not calculated the value of re-
flectivity, instead we have assumed a value for reflectivity.
In a realistic situation, there will be some reflectivity at the
end of the grating due to change of boundary, which needs
to be calculated. However, we can put an external mirror
and the reflectivity R can be adjusted to a desired value.
By introducing a reflectivity, the start current is reduced,
but the outcoupled power may not be optimized. Using our
calculation in the saturation regime, one can optimize the
parameters to obtain optimum combination of start current
and outcoupled power.

CONCLUSIONS

In this paper, we have set up Maxwell-Lorentz equa-
tions for the one-dimensional time-dependent analysis of
SP-BWO including end reflection and attenuation due to
finite conductivity. We have obtained a solution in the
linear regime and extended the analysis to the nonlinear
regime by solving the Maxwell-Lorentz equations numeri-
cally. Our analysis can be used for detailed optimization of
outcoupled power and start current in SP-BWO taking end
reflection and attenuation into account.
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