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Abstract

We study the dependence of start current in Smith-
Purcell backward wave oscillator (SP-BWO) on grating pa-
rameters and electron beam parameters. The attenuation
due to finite conductivity of the grating material is taken
into account and three-dimensional effects are included in
an approximate way in the analysis. We find that the start
current can be significantly reduced by optimizing the grat-
ing parameters.

INTRODUCTION

The Smith-Purcell free-electron laser (FEL) is a back-
ward wave oscillator (BWO) for low energy electron beam
[1,2]. In a BWO, like any oscillator system, the electron
beam current needs to be higher than a threshold value,
known as the start current, in order to produce coherent
electromagnetic oscillation. In a recent paper [2], we have
performed a calculation of start current for the case of sheet
electron beam skimming over the grating surface in a SP-
BWO. The attenuation of the backward wave due to fi-
nite conductivity of the grating was not taken into account
in this calculation. The issue of attenuation becomes im-
portant while optimizing the parameters of SP-BWO. Re-
cently, Andrews et al. [3] have discussed the calculation
of attenuation coefficient for the backward wave supported
by the grating. They have also studied the dependence of
gain and attenuation in SP-BWO as a function of group ve-
locity as the energy of the co-propagating electron beam is
varied, keeping the grating parameter fixed. In this way,
they have calculated the net gain. However, gain does not
have a straightforward meaning in a BWO. In this paper,
we therefore present a calculation of start current taking
into account the effect due to attenuation. We use this cal-
culation to study the dependence of start current on grating
parameters as well as electron beam parameters.

START CURRENT CALCULATION

In a SP-BWO, the electron beam interacts with the co-
propagating surface electromagnetic mode supported by
the grating. The co-propagating surface mode has a group
velocity in the direction opposite to the electron beam. We
consider a sheet electron beam in the (y, z) plane propa-
gating at a height b from the grating top surface along the
z-axis. The grating grooves are in the y-direction and per-
pendicular to the grating is in the x-direction. Due to the
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finite conductivity of the material of the grating, the surface
electromagnetic mode suffers attenuation. The attenuation
coefficient can be calculated as per the prescription given
by Andrews et al. in Ref. 3. Attenuation occurs in the di-
rection in which the energy is flowing. Here, the phase ve-
locity of the resonant surface mode is along the positive z-
axis and the group velocity vg is along the negative z-axis.
Let the longitudinal component of the the electric field of
the backward wave be given by E(z, t) exp(ik0z − iωt).
Including attenuation in the analysis, the equation for the
evolution of the amplitude E(z, t) of the backward wave
described in Ref. 2 gets modified to

∂E

∂z
− 1
vg

∂E

∂t
=

IZ0χ

2βγΔy
e−2Γ0b〈e−iψ〉 + αE, (1)

where α is the complex attenuation coefficient having pos-
itive real part. Note that we are here closely following
the notations and derivations given in Ref. 2. Here, I is
the electron beam current, Δy is the beam width in the y-
direction assumed to be so large that two-dimensional ap-
proximation is valid, β is the electron velocity in the unit
of speed of light c, γ is the electron energy in unit of rest
energy, Z0 = 377 Ω is the characteristic impedence of free
space, Γ0 = k0/γ, ψ is the electron phase and χ is the
residue of the singularity associated with the surface mode
as defined in Ref. 2. Converting to dimensionless variables,
this equation can be transformed to the following form

∂E
∂τ

− ∂E
∂ζ

= −J 〈e−iψ〉 − αLE , (2)

where L is the length of the grating, E is the dimensionless
electric field, J is the dimensionless beam current, τ is the
dimensionless time and ζ = z/L is the normalised distance
along the grating [2]. The second term in the right hand
side of the above equation is the contribution due to attenu-
ation. The above equation for the evolution of surface mode
electric field will be coupled to equations for the electron
beam dynamics as discussed in Ref. 2. We then linearise
the equations and look for the solution for the electric field
growing as eντ . For a given value of J and αL, we can ob-
tain the complex growth rate ν by simultaneously solving
the following set of two equations

κ3 − (ν + αL)κ2 + iJ = 0. (3)

κ2
1(κ2 − κ3)eκ1 + κ2

2(κ3 − κ1)eκ2

+κ2
3(κ1 − κ2)eκ3 = 0. (4)

Note that we have ignored the space charge parameter Q
defined in Ref. 2, and assumed Q = 0. Here, κ1, κ2 and
κ3 are three solutions for κ in Eq. (3). For a particular
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value of αL, by solving these equations numerically, we
can find out the minimum value of J for which the real
part of ν is positive. Let us call this as dimensionless start
current denoted by Js, which is a function of αL. For the
case when there is no attenuation (αL = 0), we had earlier
obtained that Js =7.68 [2]. Here, by numerically solving
Eqs. (3) and (4), we obtain the dependence of J s on αL.
This is shown in Fig. 1. Note that Js depends only on the
real part of αL.

The expression for the start current density dIs/dy is
given by

dIs
dy

= Js(αL)
IA
2πχ

β4γ4

kL3
e2Γ0b, (5)

where IA = 17 kA is the Alfvén current. Here, k = ω/c
= 2π/λ and λ is the free space wavelength of the surface
mode. In the next section, we use the above formula to
calculate and optimize the start current.
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Figure 1: Plot of threshold dimensionless current Js as a
function of the real part of the attenuation coefficient αL.

OPTIMIZATION OF GRATING
PARAMETERS

In the past, many authors [1-5] have used the parameters
corresponding to the Dartmouth experiment [6] for study-
ing the performance of SP-BWO. For the Dartmouth ex-
periment, the grating parameters and the electron beam pa-
rameters are given in Table 1. Note that we interpret the
electron beam radius in Table 1 as the parameter b in our
model. Using the formula derived in the previous section,
we optimize the grating parameters for this case to min-
imise the start current.

First, we calculate the attenuation coefficient for differ-
ent values of groove depth d and groove width w. For w =
62 μm, we vary the groove depth d and find out the atten-
uation coefficient α for each groove depth. This is shown
in Fig. 2(a). Note that for the calculation of the attenua-

tion coefficient, we have chosen Aluminum as the material

Table 1: Parameters for the Dartmouth experiment

Groove width (w) 62 μm
Groove depth (d) 100 μm
Period (λg) 173 μm
Grating length (L) 12.7 mm
Electron beam radius (b) 10 μm
Electron beam energy 35 keV
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Figure 2: Plot of the real part of attenuation coefficient α
(a), and the χ parameter (b) as a function of groove depth
(solid curves) for groove width = 62 μm, and as a function
of groove width (dashed curves) for groove depth = 150
μm.

of the grating and used the prescription given by Andrews
et al. in Ref. 3. Then, keeping w = 62 μm, we calcu-
late χ for different values of d as shown in Fig. 2(b). For
the calculation of χ, we have used the prescription given in
our earlier paper [2]. Next, knowing the value of α and χ,
we use Eq. (5) to obtain the start current density as a func-
tion of groove depth for w = 62 μm. As the groove depth
increases from 100 μm, the χ parameter increases, which
means that the start current density decreases. However, as
the groove depth is increased beyond 100 μm, the attenua-
tion also increases, which tends to reduce the start current

MOPPH014 Proceedings of FEL 2006, BESSY, Berlin, Germany

68 FEL Theory



density. Consequently, there is an optimum groove depth at
which dIs/dy is minimum. As we find in Fig. 3, the start
current density is minimum for d = 150 mm. The value of
dIs/dy reduces from 40 mA/mm to 7.7 mA/mm when the
groove depth is changed from 100 μm to 150 μm.

After optimizing the groove depth, we next optimize the
groove width. Keeping d = 150 μm, we varyw from 50 μm
to 150 μm and obtain the attenuation coefficient and the
χ-parameter as shown in Fig. 2. Then, using Eq. (5), we
obtain the value of dIs/dy for different values of groove
width, keeping groove depth fixed at 150 μm. This is
shown in by the dotted curve in Fig. 3. We find that the
optimum value of groove width is 110 μm for which the
start current density is 5.6 mA/mm.

Hence, we find that the parameters for the Dartmouth
experiment are not optimized for the minimum value of
the start current. The optimized value of the groove depth
and the groove width are 150 μm and 110 μm respec-
tively. For these parameters, the start current density is 5.6
mA/mm, which is a substantial reduction compared to start
current density of 40 mA/mm corresponding to the param-
eters given in Table 1.
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Figure 3: Plot of the start current density dIs/dy with
groove depth (solid line) as well as groove width (dashed
line). For the solid line, we have kept groove width fixed
at 62 μm. For the dashed line, the groove depth is fixed at
150 μm.

In the above calculations, when we change the groove
width and the groove depth, the resonant wavelength λ of
the surface mode also changes. The value of λ can be ob-
tained by finding out the location of the singularity of the
reflection matrix associated with the surface mode, as dis-
cussed in Ref. 2. Fig. 4 shows the variation of the resonant
wavelength. We find that for w = 110 μm and d = 150 μm,
for which the start current is minimum, the resonant wave-
length is 819 μm. Note that for the calculation of dIs/dy,
one needs to put the value of the free-space resonant wave-
length λ of the surface mode in Eq. (5), which has been
taken from Fig. 4.
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Figure 4: Plot of the free-space resonant wavelength λ with
groove depth (solid line) as well as groove width (dashed
line). For the solid line, we have kept grove width = 62 μm.
For the dashed line, groove depth = 150 μm.

DISCUSSIONS

We would now like to discuss the dependence of the start
current on the length of the grating. It is important to in-
clude three-dimensional effects for such an analysis [7]. A
fully three-dimensional analysis of SP-BWO does not ex-
ist yet. However, we will attempt an approximate analysis
here. The surface mode in the (y, z) plane is expected to
diffract freely as an optical packet of wavelength βλ since
the grating is open in y-direction. The minimum average
rms beam size of the optical beam over the length L due to
diffraction effects is given by

√
βλL/4π. In order to max-

imize the overlap between the electron beam and the opti-
cal beam, the rms electron beam size σy in the y-direction
should be chosen equal to this. Putting the electron beam
size in the y-direction in Eq. (5), we obtain that the start
current Is should be proportional to Js(αL)/L5/2. As we
increase the length, the start current increases due to in-
crease in Js. This is however counterbalanced by the L5/2

factor in the denominator. For αL < 1, Js can be assumed
to be slowly varying. Hence, the start current should de-
crease as 1/L5/2. For the larger values of αL, the atten-
uation effects will be dominating since Js becomes expo-
nential as shown in Fig. 1. In this case, the start current
increases with grating length.

One of the important requirements for the operation of
SP-BWO is that the electron beam should be sufficiently
close to the grating surface. As the electron beam size in
the x-direction increases, the start current increases expo-
nentially due to the exp(2Γ0b) factor in Eq. (5). Hence,
the rms electron beam size σx in the x-direction should be
around 1/4Γ0. In order that the electron beam size in the
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x–direction is maintained around this value over a length
L, we need that the normalised electron beam emittance
εx is less than βγ/L(4Γ0)

2. We therefore notice that al-
though the start current reduces by increasing the grating
length, the requirement on electron beam emittance in the
x-direction becomes more stringent.

One should also confirm that the space charge effect does
not blow up the emittance. For this to be valid, the space
charge term in the envelope equation should be less than
the emittance term. This leads to the following condition
in the x-direction [7]

4
βγ

I

IA

σ3
x

(σx + σy)ε2x
< 1. (6)

It is important to point out here that for the Dartmouth pa-
rameters given in Table 1, the above inequality is not sat-
isfied. After optimizing the grating parameters, the start
current is reduced and then the above inequality is satis-
fied.
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Figure 5: Plot of power per unit beam width in the surface
mode as a function of time at the entrance of the grating for
the optimized grating prameters.

We would like to point out that for the optimized grating
parameters that we discussed, although the start current is
reduced significantly compared to the grating parameters
in Table 1, the attenuation is increased as seen in Fig. 2.
This means that the heat loss in the grating will be more
for the optimized parameters, which implies that the power
conversion efficiency of SP-BWO will be reduced. For ex-
ample, for the optimized grating parameters that we dis-
cussed, Is/Δy = 5.6 mA/mm. For this case, if we take
I/Δy = 7 mA/mm, we obtain P/Δy = 900 mW/mm at
saturation as shown in Fig. 5. This translates to a power
conversion efficiency of 0.37%. Note that this calculation
is performed by numerically solving the coupled Maxwell-
Lorentz equations as discussed in Ref. 8. On the other
hand, for the Dartmouth parameters, we have Is/Δy = 40
mA/mm. For this case, if we take I/Δy = 50 mA/mm, we

obtain P/Δy = 14.3 W/mm at saturation. This translates
to a power conversion efficiency of 0.56%.

CONCLUSIONS

We have derived a simple formula for the start current
density in a SP-BWO taking the attenuation due to finite
conductivity of the grating material into account. This for-
mula has been used to optimize the parameters of the grat-
ing. We find that for the parameters corresponding to the
Dartmouth experiment, the start current can be reduced by
six times by optimizing the grating parameters.
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