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Fig.1: Excitation of radiation modes by particulate charges 
(Frequency Domain). 

COHERENCE OF E-BEAM RADIATION SOURCES AND FELS –  
A THEORETICAL OVERVIEW 

Avi Gover, Egor Dyunin, Tel-Aviv University, Ramat Aviv, Israel. 

GENERAL FORMULATION FOR 
RADIATION EMISSION FROM 

MICROSCOPIC CHARGES 
This publication is mostly tutorial. It presents a general 

time-frequency modal-expansion linear formulation for 
radiation excitation from charges. This, however, can be 
employed to analyze front-line FEL research problems. 
Starting from description of synchrotron undulator 
radiation, the model is extended to describe the coherence 
characteristics of stimulated emission devices (FEL 
amplifiers and oscillators), and then further extended to 
the SASE regime. It is then employed to point out 
directions for development of coherent X-UV FEL 
sources. 

The starting point of our formulation is the general 
Maxwell Equations driven by particulate point charge 
sources (the source dimension is smaller than the 
emission wavelength): 
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where in general the point sources may be free electrons, 
atomic electric dipoles or atomic magnetic dipoles and 
spins [1]: 
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In this article we focus on free electrons. 

Maxwell Equations can be exceedingly simplified in the 
frequency domain. In the frequency domain it is possible 
in many structures to expand the radiation field in terms 

of a complete set of eigenmodes { qE
~

}: 
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This certainly can be done in a waveguide, but also in 

free-space, where one can use a discrete set of modes like 
Hermit-Gaussian modes, commonly used in laser physics, 
or continuous modes – like plane waves. In this latter case 
the summation of q degenerates into integration over 
transverse wave numbers.  

After modal expansion it is possible to simplify 
Maxwell’s set of 3-D differential equations into a simple 
infinite set of first order ordinary differential equations for 
the complex amplitudes Cq(z,ω) [2,3]. These can be 
solved for each mode at steady state, if the initial 
condition Cq

in(ω) (the complex amplitudes at the entrance 
to the interaction region) is given (see Fig.1). The formal 
solution for the increment of the complex amplitudes in 
the case of free electron microscopic charges is: 
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For any charges in the interaction volume the output 

amplitudes Cq
out can be calculated. Thus the entire output 

radiation field can be calculated then by substituting 
{Cq

out} back into the expansion series (3), or using it 
otherwise to calculate optical parameters.  
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This suggests the following picture for modal 
excitation: the field amplitude increment of each mode is 
composed of the sum of contributions from the individual 
electrons, which correspond to the “wavepackets” emitted 
by the individual electrons. To calculate the increment to 
the radiation mode amplitude, one must solve a contour 
integral along the trajectory of each electron and sum up 
the wavepacket contributions. 

In principle, the trajectories can be expanded in series 
in terms of the field amplitudes Cq. To zero order, the 
trajectories of the electrons are not modified by the 
radiation field and we know them explicitly. In this case 
the contour integrals can be performed straightforwardly. 
If all the electrons have the same trajectories (a narrow 
beam), then their wavepacket amplitudes are identical, 
except for a “start oscillation” or “entrance time” phase 
factor [3]:  
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The contribution of the electrons to the total field 

depends to zero order in the fields on the phase relation 
between the wavepackets. These contributions (second 
term in (5)) give rise to the spontaneous or superradiant 
emission of the electron beam [3]. At higher order of 
expansion in terms of the fields, the modification of the 
electron trajectories by the fields, gives rise to stimulated 
emission or stimulated absorption, represented by the last 
term of (5).  

Once one calculated the mode amplitudes (5) it is 
possible to substitute them in (3) to find the total field. 
Alternatively, one can use them to calculate optical 
parameters as radiation mode power or spectral energy 
(both are quadratic forms of Cq): 
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Several physical situations can be distinguished, 

corresponding to the manner the amplitudes in (5) 
combine in the complex Cq(ω) plane to produce the total 
radiation field. These are shown graphically in Fig.2 [3]. 
Let us now neglect the stimulated emission terms, and 
assume no input field Cq

in(ω) = 0. When one absolute 
value square the second term in (5) and then average over 
the electron phases j, one can distinguish two cases, 
corresponding to two different emission processes: 

(1) The electron entrance times are random (Fig.2a). In 
this case only the non-mixed terms in the square of the 
sum do not average down to zero 

( 0ee
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), consequently the spectral 

energy is proportional to the number of particles N. This 
process is referred to as spontaneous emission or shot 
noise emission, and radiation spectral energy (6) is 
proportional to: 
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(2) The electron entrance times are correlated (Fig.2b): 

either they enter in a bunch of duration shorter than the 
radiation period, or periodically at the radiation 
frequency. In these cases the wavepackets emitted by the 
individual electrons interfere in phase with each other, 
and the spectral power is proportional to N2: 
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(a)    (b)    (c) 

Fig.2: Superposition of mode wavepacket amplitudes of electrons Cqj in the complex plane: a) spontaneous emission, 
b) superradiant emission, c) stimulated emission. 
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Fig.3 The spectral emission curve of undulator radiation 
of single electron emission. 
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We term this emission process “superradiance”, 

following Dicke [4], who analyzed this case for an 
ensemble of molecules having electric or magnetic 
dipoles, employing a full quantum formulation (note 
though that the superradiance effect is classical even in 
Dicke’s problem [1]). Superradiant emission is also 
termed coherent emission, as in CSR [5]. 

(3) When the mode field amplitudes at entrance do not 
equal to zero (Cq

in ≠ 0) (Fig.2c), the electron trajectories 
may be modified by the presence of the radiation field, 
and the integral (4) will result in, beyond the zero order 
expansion approximation, a field-dependent radiation 
term (third term in (5)). This is the stimulated Emission 
term. In first order expansion in the fields (linear regime), 
neglecting inter-mode scattering, and this term is 
proportional to the mode field amplitude:  
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and therefore produces radiation wavepackets in phase 
with the incoming wave of amplitude Cq

in, and the total 
radiation is coherent. 

UNDULATOR RADIATION OF A SINGLE 
ELECTRON 

The formalism and classification described in the 
previous section can be applied to any kind of radiation 
mechanism: undulator, synchrotron, Smith-Purcell etc. 
[3, 6]. We now concentrate on the case of radiative 
emission in an undulator. Expressing the radiation field 
both in frequency domain and time domain, helps to 
understand the coherence characteristics of undulator 
radiation and FEL devices. We therefore will employ on 
occasions inverse Fourier transform on the radiation 
expressions which are generally derived in this 
formulation in the frequency domain. 

The frequency domain amplitude of a wavepacket 

emitted into transverse mode q by a single electron 
traversing through an undulator is calculated from (4): 
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The result is:   
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 is the slippage 

time, and ω0, the synchronism frequency, is defined from 
θ(ω0) = 0. Substituted in (6), this is a resonant emission 
linewidth function, centered on the synchronism 
frequency, and having a frequency bandwidth equal to the 
inverse of the slippage time (Fig.3): 

Note that the amplitudes (10) of the wavepackets Cqj
out 

of different electrons differ only by a phase factor (as in 
(5))! 

One can describe the wavepacket field in the time 
domain by performing an inverse Fourier transform over 
the complex amplitude function (10): 
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(11) 
 
In the time domain, the wavepacket is composed of two 

simple truncated sinusoidal waveforms (Fig.4). The high 
frequency radiation wavepacket of slippage time duration 
tsl1 arrives first after a retardation time L/vgl; then the 
electron arrives after time L/vz and at the end the low 
frequency wavepacket, corresponding to backward 
emission in the electron rest-frame, arrives with a 
radiation (back-slippage) time L/vg2 [7]. Here vg1, vg2 are 
the group velocities of the waves propagation in a 
waveguide enclosure [7]. In free space vg1 = c, vg2 = -c 
and the low frequency wavepacket is actually emitted 
backward also in the lab frame. In any case this low 
frequency wavepacket is not important for the present 
discussion and will be neglected in the subsequent 
discussion. 
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UNDULATOR RADIATIVE EMISSION OF

 

A BUNCH OF ELECTRONS 

If we consider now emission from a bunch of N 
electrons, its resultant radiative emission field will be 
composed of a superposition of wavepackets like the one 
in Fig.4 [3]. In the frequency domain the emission 
amplitude from all electrons (10) is the same except for a 
phase factor. Therefore the spectral emission curve is the 
same function as of a single electron (Fig.3). It is 
multiplied by N in the case of spontaneous emission 
(when t0j is random - see Eq.7) or by N2 in the case of 
superradiant emission (when |t0j-t0| < 2π/ω - see Eq.8). 

EMISSION OF A PERIODIC TRAIN OF 
ELECTRON BUNCHES 

Examine now superradianat radiative emission from a 
train of electron bunches, for example a macro pulse of an 
RF accelerator (Fig.5a). 

The periodic bunches radiate independently of each 
other. The resultant radiation waveform (Fig.5b) is a 
temporal periodic sequence of the single bunch 
wavepackets of Fig.4 (only the high frequency 
wavepackets are considered). The duration of the electron 
beam macropulse is Tp = Np*2π/ωb: the number of 
electron bunches Np times the bunching period. The 
duration of the wavepacket is tsl = Nw*2π/ωr: the number 
of wiggles Nw times the optical radiation period. The 
Fourier transform of the wave is dominated by these two 
time constants. Fig.5c displays the spectral power of this 
waveform (frequency domain) for the common case 
where tsl << 2π/ωb. In this case there is no overlap 
between the wavepackets, and consequently there are 
several harmonics under the emission curve. 

In the frequency domain, the macropulse spectral 
emission curve is the product of the single electron 
emission curve (the absolute value square of (10) – Fig.3) 
and the macropulse “form factor” [3]: 
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The emission is wide band (2π/tsl), but if one can filter 

out one harmonic, or if ωb  >  Δωsl , it will have a narrow 
linewidth corresponding to the macropulse duration 
(under the condition of stability of the bunching 
frequency during the entire macropulse duration). This 
observation will be important also for the later discussion 
on the case of FEL oscillator and SASE. 

A nice verification of this concept was demonstrated by 
the MIT research group [8] who measured superradiant 
Smith-Purcell coherent emission using an RF Linac beam. 
Carefully filtering out the radiation emission at the 14th 
harmonic of the microbunch repetition rate within the 
macropulse by heterodyne detection techniques, they 
measured the exceedingly narrow linewidth of the total 
waveform of the macropoulse radiation. It was indeed 
2π/Tp, corresponding to the duration Tp of the e-beam 
macropulse. 

If the electron bunch has a finite duration tb, then the 
expression for radiation spectral energy includes also a 
"bunch–form factor" 
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Fig.4: Time domain waveform of a single electron 
emission wavepacket. 
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Fig.5: Superradiant (coherent) radiative emission from 
a macropulse train of e-beam bunches: 
  a) current waveform; b) time domain picture of the  
train of phase coherent radiation wavepackets; 
  c) spectral power of the radiation field waveform (b). 
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(which is equal to unity as long as tb << 2π/ω). 
This, in practice, limits the harmonic number nH, that can 
have appreciable amplitude out of the infinite numbers of 
harmonics that the macropulse form factor (12) admits, to  

 

bH t2n ωπ<<    (14) 

 
If the waveform of the electron-beam current does not 

contain high harmonics (e.g. it is sinusoidally modulated) 
then there will be no harmonics under the spectral energy 
curve in Fig.5b except the fundamental (nH=1), and its 
amplitude will be appreciable only within the bandwidth 
of the single electron emission spectrum 
(ω−ωb) < Δω = 2π/tsl. The narrow linewidth (δω ~ 2π/Tp) 
radiation of the prebunched FEL follows the detuning 
curve of Fig.3 as demonstrated experimentally in [22]. 

Single harmonic radiative emission can take place also 
at high harmonic nH of the bunching frequency ωb. This 
will  happen (under the condition (14)) if the spacing 
between the harmonics exceeds the emission bandwidth: 
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In this case, the wavepackets train of Fig.5b merges into 
an harmonic wave of the macropulse duration Tp. 

 

FEL AMPLIFIER 

Our main interest is in stimulated emission. Many of 
the spectral features of superradiant emission discussed 
above apply quite closely also to stimulated emission in 
an amplifier configuration. The derivation of the 
increments ΔCq

st in the wavepacket amplitudes (third term 
in Eq.5) in the amplifier case is more involved, since it 
requires the calculation of the modification of the electron 
trajectories by the input radiation field. When this is done, 
it is found that also in this case the electron beam is 
bunched. The classical stimulated emission from an 
electron beam, always involves electron beam density 

bunching. Contrary to superradiance the bunching is not 
set ab-initio, before entrance into the interaction region, 
but it is created by the input radiation signal, at the signal 
frequency, in the first part of the wiggler. 

As well known, in a CW (or long pulse) FEL amplifier 
the single mode (1-D) incremental power gain is given in 
the linear (small signal) small gain regime by (see Fig.6) 
[6, 16]: 
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The frequency ω of the electron bunching and the 

consequent radiation is determined by the input radiation 
signal. Thus the bandwidth of emitted radiation is 
determined by the bandwidth of the input signal, and if it 
is monochromatic then the output radiation is temporally 
coherent (except for admixture of noise (spontaneous 
undulator radiation) power emitted in the wiggler. Note 
however that the gain curve (16) (Fig.6, which is the 
derivative of the spontaneous emission spectral curve 
Fig.3) is quite wide still – about one half the width of the 
spontaneous emission curve Δωst = π/tsl. 
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Fig.7: RF-Linac FEL Amplifier in the time domain.  
   a) multi-frquency coherent input signal  
   b) Electron beam macropulse current waveform 
   c) Amplified signal. 
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Fig.8: Spectral power of the amplifier output radiation 
waveform of Fig.7c. 
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If the electron beam is not continuous, of course, its 
temporal wave-form will modify the spectrum of the 
amplifier radiation output. Let us consider an FEL 
amplifier fed by a train of electron beam pulses 
(microbunches) from a continuously operating RF-
LINAC (see Fig.7b). The electron macropulse duration, 
micropulse duration and repetition period are typically 
Tp = 10 μs, Tb ~ ps, TRF ~ ns respectively. The radiation 
signal period (say is the visible spectral region) 2π/ω0 ~ fs 
and the slippage time Nw2π/ω0 ~ 10 – 100 fs, are both 
much shorter than the pulse duration Tb. 

Fig.7 depicts this case in the time domain. For didactic 
reasons we assume that the input radiation (Fig.7a) is a 
coherent multi-frequency wide spectrum signal, wider 
than the gain bandwidth of the FEL (Δωst ~ π/tsl). The 
output signal (Fig.7c) is time gated by the waveform of 
the electron beam (Fig.7b) and also frequency filtered by 
the gain bandwidth of the FEL during the pulse duration. 

The same case is displayed in the frquency domain in 
Fig.8. Only radiation frequencies within the gain 
bandwidth π/tsl of the gain curve Fig.6 are amplified. 
Among the amplified frqeuncies only the ones which are 
harmonics of the bunching frequency ωb, within a 

frqeuncy deviation Δω ~ 2π/Tp will contribute coherently 
to a Fourier transformation of the waveform in Fig.7c 
(carried out over the entire macropulse). Consequently the 
amplified signal spectrum will contain harmonics of ωb of 
linewidth 2π/Tp.  

RF – LINAC FEL OSCILLATOR 
In laser physics it is customary to present an oscillator 

as an amplifier with feedback. In each round-trip a 
radiation wave-packet synchronous with an overlapping 
e-beam bunch gets amplified and is reflected back by 
mirrors into the entrance to the interaction region. It is 
assumed that the bunching frequency is commensurate 
with the round-trip frequency of the resonator: a new e-
beam bunch arrives together with the radiation pulse, and 
the amplification process continues up to steady state 
saturation. 

How does the saturation of an RF Linac FEL look in the 
time domain? Fig.9 displays the steady state waveform of 
the oscillator radiation in the time domain. It displays 
radiation pulses emitted synchronousely with the RF 
bunches, somewhat modified by the slippage effect (as in 
the amplifier case – compare to Fig.7c).  

In the frequency domain (Fig.10a), the single path gain 
curve is the same as in the amplifier (Fig.8), and the RF 
frequency of the e-beam bunches is synchronized (by 
cavity length detuning) with the round-trip frequency of 
the radiation pulses – namely the longitudinal modes of 
the resonator. In addition, in the oscillator there is a gain 
threshold condition: Pout/Pin > 1/Rrt. In the oscillation 
build-up process all modes (harmonics) are initially 
excited. But at saturation only modes with gain higher 
than the threshold are filtered in, and have a chance to 
survive the oscillation build-up process (Fig.10a). 

The steady state output is as in the superradiant 
emission case (Fig.5) a finite coherent sum of longitudinal 
modes that lie within the gain bandwidth π/tsl of the FEL. 
This finite sum of harmonic frequencies looks in the time 
domain as a periodic train of radiation pulses synchronous 
and with good overlap with the macropulses of e-beam 
bunches train that provides the gain. This is an exact 
analogue of an actively locked conventional "mode locked 
laser". Also in this case, if the RF frequency is stable over 
the macropulse, the coherence of the harmonics is very 
high (if they are filtered out), and is determined by the 
duration of the macropulse Δω ~ 2π/Tp. Namely, the 
consecutive radiation wavepackets are coherent with each 
other throughout the macropulse (assuming a single 
bunch per round-trip).  

It is worth noting that high coherence between the 
radiation wavepackets emitted by consecutive 
microbunches was measured in a long-wavelength FEL 
oscillator [19]. This was measured both for the 
spontaneous and stimulated emission of the FEL. It is 
remarkable that this coherence was observed when there 
are several microbunches in the resonator at the same 
time (RF bunching period shorter than the cavity round-
trip time). This is explained there as the result of high 
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Fig.9: The time domain waveform of the radiation 
wavepackets emitted at saturation by an RF-Linac FEL 
oscillator during the electron beam macropulse. 
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mode-locked in an RF-Linac FEL, b) Single mode 
operation in a quasi-CW or long pulse (electrostatic 
accelerator) FEL. 
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stability of the e-beam RF frequency and the 
microbunches envelop shapes. It is argued that in the 
parameters regime of the FELIX FEL [19], the 
microbunch formfactor (16) is appreciable of the emission 
frequency, and the superradiant (coherent) undulaotr 
radiation related to the stable shape of the micropulse 
current waveform dominates the random shot noise 
radiation, and consequently determines the phase of all 
wavepackets. This happened both under conditions of 
saturated stimulated emission (oscillator lasing) and 
absence of stimulated emission (no overlap of the 
recirculating wavepackets). 

CW (ELECTROSTATIC ACCELERATOR) 
FEL OSCILLATOR 

What would happen in a CW or a long pulse FEL 
oscillator (like an electrostatic accelerator FEL)? In this 
case, there are longitudinal modes due to the round-trip 
periodicity, but there is no active mode locking. In 
principle, many longitudinal modes can co-exist within 
the gain bandwidth, and there is no external que that can 
phase-lock them.  

The oscillation build-up stage involves in this case a 
mode competition process, which arises when the 
oscillator approaches saturation and arrives to the non-
linear regime. In the FEL, as in other "homogenously 
broadened lasers", this process ends with single mode 
operation (see Fig.10b). The single mode laser radiation 
linewidth is very narrow corresponding to the pulse 
duration. It is given by the Fourier transform limit 
Δωline ~ 2π/Tp, and it tends to zero as Tp → ∞ (CW 
operation). An experimental confirmation for the mode 
competition process and the Fourier transform limited 
linewidth of the single-surviving mode in an Electrostatic 
Accelerator FEL was provided in the Israeli FEL [ 9] (see 
Fig.11). In [9] a relative linewidth Δωline/ω0 = 10-6 was 
measured at frequency f0 = 100 GHz corresponding to a 
pulse duration Tp ~ 10 μs. 

What determines the linewidth in the limit Tp → ∞? 
This fundamental problem was addressed already in the 
early days of conventional masers [11] and lasers [12]. In 
principle the oscillator line breadth is determined by a 
process of admixture of incoherent radiation with the 
coherent stored radiation field in the cavity. This process 
leads to random phase drift of the radiation mode 
amplitude Cq at the saturation stage (the amplitude is 
locked by the saturation process). In a maser the intrinsic 
linewidth results in from incoherent black body radiation 
emission into the cavity [11]. In a conventional laser, the 
limiting factor is the quantum spontaneous emission [12]. 
In the FEL the limiting factor is the spontaneous 
undulator radiation emission (or the electron beam shot 
noise) [9, 13]. The three intrinsic linewidth expressions 
are listed in Table 1.  

HIGH GAIN FEL AMPLIFIER 
Our analysis of the FEL in the linear regime is based on 

the Pierce TWT model for TWT [14, 6]. It is found that 
the amplitude of the radiation mode Cq(L) in an FEL 
amplifier of interaction length L, depends on the input 
field amplitude Cq(0) (regular FEL), but also on the 
amplitudes of the e-beam velocity and current (density) 
pre-modulation [15, 16]:  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )0,0,0,, ωωωωωωω IHvHCHLC Iv
q

E
q ++=

(17) 

 
where the transfer functions are:  

a) 

Δω/ω0 = 10-5Δω/ω0 = 10-5

b) 

Fig.11: Spectrogram of the radiation output from an 
electrostatic accelerator FEL oscillator [9]. 
   a) Multimode spectrum evolving into single mode 
operation during the oscillation build-up periods.  
   b) Fourier transform limited spectrum of the surviving 
single mode. 

 
Table 1: Intrinsic Linewidth Conditions 
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In these formulas we use the “conventional” 

parameters: θ - detuning parameter; Γ – gain parameter; 
θpr – space-charge parameter with reduction factor; L – 
interaction length; Ib – electron beam current, Aem – 
effective mode area. Here δk = kz-kzq is the modification 
to the wavenumber of mode q (at fixed frequency ω) due 
to the interaction. Solution of the Pierce cubic dispersion 
equation 18.5 and substitution into (17, 18.1-18.3) results 
in the output radiation field amplitude for all gain regimes 
and any initial conditions.  

In the high gain tenuous beam regime (Γ3 >> θ,θpr,1) 
one gets for an FEL amplifier: 
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for a current (density) pre-bunched FEL: 
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for a velocity pre-bunched FEL: 
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Here  
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is the power transfer function of the high gain FEL, and 
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is the full width of 1/e of maximum of the high gain FEL 
gain curve and 

SASE FEL 
The current and velocity modulation amplitudes in 

(19.2, 19.3) may be deterministic (prebunching) or 
random (noise). The video presentation in the 
transparencies demonstrates the meaning and significance 
of the current and velocity coherent modulation and noise 
processes. 

The SASE FEL is based on amplification of electron 
beam noise in the FEL high gain regime. To analyze this 
case it is proper to calculate spectral energy and spectral 
power parameters instead of the single frequency gain and 
radiative power parameters (19.1-19.3):  
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where the averaging is over the electrons random entrance 
times and T is an averaging time duration longer than the 
slippage time tsl.  

The SASE FEL is nothing but a single path high gain 
FEL with an effective beam-prebuncing input signal due 
to current shot noise and velocity shot noise. Near the 
synchronism frequency its spectral power is a sum of the 
amplified current and velocity shot noise sources: 
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(a)    (b)    (c) 

Fig.12: Simulation data of SASE radiative emission [9, 16]: 
    a) Single pulse spectral power,    b) Spectral power averaged over many pulses,      c) Time domain "Spiky"  intensity

 distribution of a single pulse. 
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Here δvz is the axial velocity spread of the electron beam.  

Usually the current shot noise is considered the main 
source for SASE input power and the velocity noise is 
neglected. This is not self evident. For this assumption to 
be valid (21.1) should exceed (21.2). Considering (22.1, 
22.2) this leads to the condition  
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SPIKING IN SASE-FEL AND THE 
IMPULSE RESPONSE FUNCTION 

Since the SASE-FEL is a wide band amplifier of a wide 
band incoherent signal (the shot noise), it is no wonder 
that the spectrum of its radiation output is relatively wide 
and its temporal waveform is characterized by a random 
sharp structure (spiky). Fig.12 [10, 17] displays the 
typical spectrum of a single SASE radiation pulse 
(Fig.12a), the averaged spectrum over many pulses 
(Fig.12b) and the spiky time-domain waveform of a 
single radiation pulse (Fig.12c). One should note that the 

relatively high bandwidth of the averaged radiation 
spectrum (1/Tcoh) is related to the characteristic duration 
of the spikes (Tcoh). It is also noteworthy, that the single 
pulse spectrum contains spectral lines that are very 
narrow (1/Tb) – corresponding to the duration of the e-
beam micro bunch - but appear at random centre 
frequencies. 

Since the shot noise spectrum is uniform, the average 
spectrum of the SASE is determined merely by the 
transfer functions (18.2, 18.3). Consider now only the 
current shot noise. It is useful to expand the logarithm of 
the exponentially growing term in (18.3) (including the 
phase, namely the imaginary part) to second order in 
terms of frequency ω around the synchronism frequency 
ω0. In the high gain (tenuous beam limit) this results in: 
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where ΔωHG is the width of the high gain FEL gain curve. 
Indeed this spectral width is the linewidth ΔωHG ~ 1/Tcoh 
of the SASE average spectrum shown in Fig.12b.  

It is instructive now to calculate the "impulse response 
function" corresponding to the complex transfer function 
(24). This is straightforwardly found by applying an 
inverse Fourier transformation on (24): 
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This function is displayed in Fig.13. It depicts (within 

the quadratic expansion approximation a Gaussian wave 
form envelope of width Tcoh ~ 1/ ΔωHG. It also reveals an 
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Fig.15: Spectral power of the coherent radiation output 
of the FEL amplifier (red) and the SASE (shot noise) 
radiation (blue). 

inherent (negative) chirp of the centre frequency 
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The impulse response function (25) is the coherent field 

wave-form created by an impulse of charge (of duration 
much shorter than the radiation wavelength), which is 

superimposed at entrance over a uniform e-beam current 
Ib. it is quite natural to identify it with the spikes 
phenomenon shown in Fig.12c. The physical picture of 
the phenomenon is based on appearance of random 
electron bunches (current fluctuation) on the electron 
beam current entering the interaction region. This current 
is uniform on the average, but fluctuates because of the 
randomness of electrons generation in the cathode ("shot 
noise"). The random electron bunches start radiating 
superradiantly right at start, and their radiation 
wavepackets dominate over the spontaneous radiative 
emission from the other uniformly (but randomly) 
injected electrons. Due to the forward slippage effect of 
the radiation wavepacket and the high gain stimulated 
emission process, the random electrons, that are flowing 
within a cooperation length vzTcoh ahead of the initial 
radiating random bunch, are induced to emit at the same 
frequency and phase (except for the inevitable chirp 
effect), and consequently a coherent wavepacket (Fig.13) 
is emitted. The output wavepacket duration 
Tcoh = π/ ΔωHG (determined by the high gain FEL 
bandwidth 19.4) is the minimal width of the spike. Spikes 
that are excited by random bunches in time always shorter 
than Tcoh merge into one spike. Assuming there are always 
enough random bunches to negate presence of long 
"silent" spaces between the spikes; one can estimate that 
the average number of spikes in a bunch of duration Tb is 
Tb/Tcoh [10]. Fig.14a displays the spikes waveforms of this 
physical model. It should be compared to the simulation 
spiky pattern of Fig.12c. If cohb TT ≅  then there is only 

one spike in the macropulse duration [17]. In this case the 
SASE radiation is as coherent as can be (Fourier 
transform limited). Its spectral width is bcoh TT ππ =≅ . 

It can be narrowed down only if pulse stretching 
techniques can be employed.  

CONDITIONS FOR COHERENT X-UV 
FEL 

It is well known that the radiation output of SASE FEL 
is spatially coherent (due to the optical guiding effect). 
This is the reason why SASE FELs can be so much 
brighter than any other existing radiation source in this 
spectral regime. However there will be even greater 
interest in this source if it would be also temporally 
coherent and stable (pulse to pulse). How can a SASE 
FEL be turned into a coherent radiation source? 

 

t 

4.7/ΔωHG E(t) 

 

Fig.13: The time domain charge-impulse response func-
tion of an FEL in the high gain regime (Eq. 20). 
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t 

a) 
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~ 1 ps
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Tb < 2π/ω0
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2π/ω0 = 3 AttoSec (for λ = 1 nm)

2π/ωb (< Tcoh = 2π/ΔωHG)
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Fig.14: Spikes emission in SASE FEL within the 
micropulses duration: a) Random emission 
b) Phase-locked coherent spikes emission initiated by 
subharmonic current prebunching. 
Prebunching can be produced by a train of superimposed 
positive or negative current impulses or any stable perio-
dic current waveform of high harmonic contents. 
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Realizing that the SASE-FEL is an amplifier of noise, it 
is evident that what is required is a coherent input signal. 
The input signal can be a coherent radiation wave (this is 
sometimes called seed radiation injection), and there has 
been intensive studies of developing an appropriate 
coherent seed radiation sources based on high harmonic 
multiplication of intense laser pulses in gas. Another 
scheme is based on filtering the undulator synchrotron 
radiation after a few sections of the undulator, and 
reinjecting the narrower bandwidth radiation into the 
undulator for high gain amplification. 

Another approach for attaining coherent emission from 
SASE-FEL is based on coherent prebunching of the 
electron beam (within the duration of its pSec 
microbunches) at the radiative emission frequency of a 
high power optical laser or its subharmonics. This process 
can be repeated in several steps, in which the bunched 
radiation is amplified at high gain, and then high 
harmonics of the electron bunching are filtered out and 
amplified again, and so on (High Gain High Harmonic 
Generation – HGHG [21]). 

In all of these schemes the condition for attaining 
coherent high power output radiation is that the coherent 
input signal will be significantly larger than the noise. In 
the first case of seed radiation injection (coherent 
amplification) a simple criterion can be inferred by 
comparing (19.2) to (21.1-22.2). Assuming the current 
shot noise is dominant, this condition is: 
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( )

ωΔ
Γ 2

0
LI

e
PP

b
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Here Δω is the frequency bandwidth of the detection 
system in which inevitable (now undesirable) SASE 
radiation is collected. If there are no means of filtering 
available, then Δω = ΔωHG - the SASE radiation 
bandwidth. In any case Δωs, π/Tb < Δω < ΔωHG, where 
Δωs is the linewidth of the injected input radiation and 
π/Tb is the Fourier limited bandwidth of the finite pulse. 
Similar condition can be derived for the required 
prebunching current required to dominate the current 
shot-noise by comparing (19.2) to (21.1, 22.1):  

 

( ) ωΔ
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ω beII
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PHASE LOCKING THE SPIKES 
If sufficient coherent seed radiation input power is 

attainable it makes the output power of the FEL amplifier 
coherent as well. But other aspects of the seed radiation 
injection approach, as tunability and operating 
wavelengths range still need to be addressed. The current 
prebunching approach may provide more options of 
frequency tunability and short wavelengths availability. 

But its realization requires more intricate conceptual 
schemes. 

Much insight into this problem may be gained from the 
physical description of the radiation processes in the 
previous section. In particular it is worth noting the 
striking correspondence between the emission of single 
mode undulator radiation wavepackets by a single 
electron (or single bunch) (10) (in the frequency domain) 
and (11) (in the time domain) and the corresponding 
expressions of spectral transfer function (24) and impulse 
response function (25) in the case of FEL in the high gain 
regime. In the first case the wavepackets emission process 
is spontaneous (or superradiant in the case of a bunch) 
and no supporting medium is required for the wavepacket 
emission. In this case Eq.11 (Fig.4) is the explicit time-
domain expression of the wavepacket emitted in the 
undulator from a particulate charge of one electron (e). In 
the second case, (Eq.25) (Fig.13) is the radiation 
wavepacket emitted by a current impulse of a unit charge, 
and the excitation of this wavepacket is conditioned on 
the presence of an electron beam medium (assumed 
uniform) in front of the beam current impulse. Its 
emission process involves stimulated emission and 
bunching of the e-beam, in contrast to the first case. 

In both cases the coherence of the total radiation of the 
e-beam depends on the phase relation between the emitted 
respective wavepackets by the charged particles or by the 
bunches. In the first case, when the electrons enter into 
the undulator at random, the superposition of the radiation 
wavepackets (11) in (5) produces incoherent radiation (or 
more correctly - partially coherent radiation with 
coherence time tsl). Analogously, in the SASE case, the 
superposition of the impulse response waveforms (23) 
from random bunches (the “spikes”) produces partially 
coherent radiation of coherence length Tcoh ~ 1/ΔωHG. 

How can we turn the SASE radiation to be coherent? In 
analogy to the case of superradiant emission from a 
periodic train of bunches it is suggested that periodic 
superposition of current impulses on top the uniform 
current of the microbunch will phase-lock the spikes into 
a coherent train of wavepackets with distinct phase 
relation of the “carrier” radiation waves along the entire 
microbunch (see Fig.14b as opposed to Fig.14a). This 
situation is analogous to the one described by Fig.5. 

How to create the sub optical period current impulses is 
still an open challenge. It is important to note that the 
current perturbation does not have to be positive (see third 
pulse in Fig.15b). It can be of any shape, as long as it is 
kept periodic along the pulse with accuracy (stability) 
better than one optical period (which may be AttoSeconds 
in the X-UV regime!), and as long as it is “sharp” enough 
to produce significant current amplitude of Fourier 
harmonics to satisfy (27.2). 

It is noteworthy that the prebunching frequency does 
not need to be equal to the radiation emission frequency 
and it can be a high sub-harmonic of this frequency. In 
this case the coherent spectrum may contain several 
harmonics as in Fig.5c, however as discussed in that 
context, each harmonic would be coherent throughout the 
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entire duration of the pulse, and its linewidth is Fourier 
transform limited (2π/Tp). In principle the harmonics can 
be filtered out by physical means or by numerical 
processing of the data acquired by a coherent detection 
system data in a spectroscopic application. 

Note that if single harmonic operation is desired it is 
not necessary that the prebunching frequency be equal to 
the radiation frequency. It is only required that the 
bunching frequency ωb (sub-harmonic nH of the radiation 
frequency ω0) will be larger than the FEL high gain 
bandwidth (compare to (15)): 
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The spectrum will look then as in Fig.5b, but with a 

single harmonic frequency of linewidth 2π/Tp under the 
amplifier gain curve. In time domain the radiation 
waveform will look then as in Fig.14, without spacing 
between the overlapping phase locked spikes. In the 
extreme limit of (25) the waveform would be a single 
coherent wavepacket along the entire pulse (microbunch) 
duration Tp. 

As mentioned above, realization of the high harmonic 
bunching schemes is still a challenge. We examine in 
principle (Fig.16) a scheme of optical laser bunching, 
employed on a uniform electron beam, which is trapped 
by the ponderomotive wave of a wiggler and an external 
coherent bunching laser. Fig.16a displays the θ-ψ phase-
space electron distribution of one pondermotive period 
exactly after one quarter period of synchrotron oscillation 
[16]. The current distribution along one bunching period 
is shown in Fig.16b and its Fourier harmonic amplitudes 
are shown in Fig.16c. Notice that significant amplitudes 
can be attained even at very high harmonics. However, in 
practice realizing the sharp current waveform structure of 
Fig.16b may be difficult, because of the electron beam 
energy spread and finite emittance. One should also bear 
in mind that in this scheme also velocity (energy) 
modulation of the beam is generated collaterally, and this 
contribution of to the radiation power (18.2) should be 
taken into account, including the consideration of the 
relative phase between the velocity and the current 
modulation. 

A third scheme that should be considered for phase 
locking and increasing the coherence of the radiation in a 
SASE FEL consists of imposing periodic perturbation on 
the wiggler (e.g. periodic dispersive sections) [20]. The 
filtering effect of the periodic structure may be viewed as 
the analogue of linewidth narrowing of radiation emitted 
in a Fabri-Perot resonator. It is speculated (but needs 
further study) that if the SASE FEL in such a structure 
arrives to saturation within the wiggler length, nonlinear 
process of mode competition between the filtered spikes 
will lead to further increase of coherence and stability in 

analogy to the CW FEL oscillator case discussed 
previous.  
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