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Abstract 

The ultrafast pulses from X-ray free-electron lasers will 
enable imaging of non-periodic objects at near-atomic 
resolution [1].  These objects could include single 
molecules, protein complexes, or virus particles.  The 
specimen would be completely destroyed by the pulse in a 
Coulomb explosion, but that destruction will only happen 
after the pulse.  The scattering from the sample will give 
structural information about the undamaged object.  There 
are many technical challenges in carrying out such 
experiments at an XFEL.  We are addressing some of 
these challenges with experiments at the FLASH soft-X-
ray FEL at DESY.   

SINGLE PARTICLE IMAGING 
The success of crystallography lies in its ability to 

overcome radiation damage by spreading the X-ray dose 
over many (> 109) identical copies of the molecule and by 
taking advantage of the strong signal that arises from the 
coherent superposition of X-rays within Bragg spots.  
However, by performing measurements with ultrashort 
pulses, we can apply crystallographic techniques to non-
repetitive structures (including cells, viruses, and single 
macromolecules).   The radiation dose required for such 
“diffraction imaging” will be orders of magnitude above 
the steady-state damage threshold of about 200–4000 
photons/Å2 (depending on sample size and wavelength) 
[2].  Even so, the high-angle (high-resolution) scattering 
from a single molecule will be extremely weak since, 

unlike diffraction from a crystal, there will be no coherent 
addition of scattering from many identical unit cells.  We 
expect that the proposed XFELs will provide enough 
photons per pulse to give a measurable atomic-resolution 
signal. 

Atomic-resolution imaging of biological objects with 
X-rays will necessarily be “lensless”; a diffraction pattern 
is recorded and a computer reconstruction algorithm 
performs the image formation step, replacing the role of a 
lens.  Although the phase (wavefront) of the diffraction 
pattern is not recorded, it is possible to reconstruct the 
complex-valued image of a finite object from the far-field 
diffracted intensity.  For single molecules and other non-
periodic objects, the diffracted intensity is not confined to 
Bragg spots as it is for crystals.  This allows an 
“oversampling” of the diffraction pattern, and the 
collection of information not accessible in a 
crystallographic experiment [3,4].  The “shrinkwrap” 
algorithm [5] is a particularly robust and practical method 
of using this information and performing 2D and 3D 
image reconstructions [6].   
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Figure 1: Schematic diagram of a single-particle 
diffraction imaging experiment at an XFEL. 
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A full 3D reconstruction can be achieved from 
diffraction patterns taken from many different 
orientations of the structure. With an XFEL, a complete 
data set will require identical copies of the object exposed 
to the beam one by one, which may be injected into the 
vacuum environment of the experiment and pass through 
the beam path at a random orientation.  With identical 
samples it will possible to sort diffraction patterns to find 
those of similar orientation that can then be averaged.  
The averaging step will be important in order to improve 
the signal to noise ratio (SNR) and hence improve 
resolution.  The critical step in the analysis becomes 
finding the minimum dose that is required not to image a 
particle, but to infer its orientation.  Hence any method 
that can be employed to fix a particle’s orientation, such 
as laser alignment [7,8] will have a big impact on the 
success of the technique. 

A concept of the single-particle diffraction experiment 
is shown in Fig. 1.  Some of the challenges we face to 
develop this technique include: understanding the 
interaction of the specimen and the FEL pulse to 
determine how short a pulse is required to overcome 
radiation damage; methods to focus X-ray FEL pulses to 
below 0.1 micron focal spots to achieve high intensity; 
development of high-dynamic range, low noise, and fast 
area detectors; methods of delivering purified samples 
into the beam without containers or substrates; handling 
the large data stream from the detectors and performing 
the classification and averaging of the diffraction data; 
and developing robust 3D imaging techniques. 

RESOLUTION LIMITS 

Radiation Damage 
Radiation damage significantly limits the resolution of 

conventional imaging experiments. Damage is caused by 
energy deposited into the sample by the probes used for 
imaging (photons, electrons, neutrons, etc.). Cooling can 
slow down sample deterioration, but it cannot eliminate 
damage-induced sample movement during conventional 
measurements [9-12]. Ultra short x-ray pulses from X-ray 
free-electron lasers offer the possibility to extend the 
conventional damage limits, and will allow the imaging of 
non-crystalline biological (and other) materials. For 
proteins, simulations based on molecular dynamics (MD) 
[1, 13, 14], hydrodynamic [15, 21], and on plasma models 
[16] indicate that if very short (100 fs or less) and very 
intense x-ray pulses are available (  106 photons/Å2 on 
the sample), then a single scattering pattern could be 
recorded from a single protein molecule in the gas phase 
before radiation damage manifests itself and ultimately 
destroys the sample (Figure 2). 

The hydrodynamic (HD) model can be computed fast 
on a computer, as compared with MD models.  However, 
the MD models are potentially more accurate since they 
treat the microscopic atom-atom and atom-electron 
interactions in greater detail. The general approach at our 
laboratories is to use HD for simulations of the soft x-ray 
experiments at FLASH and to quickly explore new 

concepts for molecular imaging at XFELs, while 
developing an advanced MD model including electrons 
for more accurate simulations of the x-ray-molecule 
interaction for XFELs. 

The basic assumption of the HD model is that the 
sample can be described by a liquid-like continuum of 
matter rather than considering individual atoms. This 
gives a simplified description of the average effects of x-
ray material interaction and atomic motion, which then 
permits calculations even on very big samples. The model 
further assumes that the particle is spherically symmetric, 
reducing the mathematical model to one dimension plus 
time. The model assumes that the motion of the atoms 
within the molecule is solely in the radial direction. The 
electrons and the atoms are treated as separate, 
structureless, fluids that interact through the Coulomb 

 
 
Figure 2: MD simulation of radiation-induced Coulomb 
explosion of a small protein (lysozyme). White balls: H, 
Gray: C, Blue: N, Red: O, Yellow: S. Integrated X-ray 
intensity: 3x1012 (12 keV) photons/100 nm diameter spot 
(corresponding to 3.8 x 108 photons/nm2, or 3.8 x 106 
photons/Å2 on the sample) in all cases. (a) Protein 
exposed to a 2 fs FWHM X-ray pulse, and disintegration 
followed in time. The atomic positions in the first two 
structures (before and after the pulse) are practically 
identical at this pulse length due to an inertial delay in the 
explosion. (b) Lysozyme exposed to the same number of 
photons as in (a) but the pulse FWHM is now 10 fs. The 
images show the structure at the beginning, in the middle 
and near the end of the X-ray pulse. (c) Behaviour of the 
protein during a 50 fs FWHM X-ray pulse. It is also 
apparent from the figure that during the Coulomb 
explosion, hydrogen ions and highly ionised sulphurs are 
the first to escape the immediate vicinity of the protein (at 
12 keV, the photoelectric cross section for sulphur is 
about fifty times larger than that for carbon). Based on 
Neutze at al. [1].  
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force and ionization processes. The short-range electron-
electron interactions are treated as a hydrodynamic 
pressure, and the long-range electron-electron and 
electron-ion Coulomb interactions are determined from 
the continuous net charge of the electrons and ions. In this 
model, all forces act radially. The model further assumes 
that the trapped electrons are thermalised among 
themselves, and that they are inertia free, so that they 
quickly relax to a force-free spatial equilibrium. Finally, 
the x-ray matter interaction, atomic ionization processes, 
and energy of the trapped electrons are described by time-
dependent rate equations. The model shows that at later 
phases in an exposure, trapped electrons quickly relax in 

energy and position to form a cloud around the positive 
ions, leaving a neutral core and a positively charged outer 
shell (similar to Debye shielding). This layer is ejected 
first from the particle, and the Coulomb explosion 
proceeds from the outside in.  A rarefaction wave 
propagates in from the surface at the sound speed, and 
hence the centre of the particle undergoes destruction 
later.  In the inner core, there is hardly any ion motion but 
the high electron temperature leads to ionization and 
blurring of the electron density.   

This behaviour has led to the proposal of a tamper as a 
sacrificial layer that will delay the onset of damage on the 
structure of interest [17].  The tamper may be a small 
water or helium drop that surrounds the molecule, and 
which has a total mass comparable to that of the 
molecule.  Modern electrospray techniques can precisely 
control the amount of solvent left around the molecule 
and can be used to select an optimum layer thickness.   

Sample reproducibility and orientation 
Each particle (macromolecule) is exposed to the beam 

only once, and disintegrates at the end of this process. 
The diffraction pattern so recorded encodes a two-
dimensional projection image of the sample (and this may 
provide sufficient information for some applications). 
Three-dimensional imaging requires more than one view 
from the sample. In addition, the signal-to-noise ratio of 
raw diffraction images will probably be insufficient for a 
high-resolution reconstruction, and it will be necessary to 
obtain a redundant data set so that averaging can enhance 
the signal. One could extend the depth of view from a 
single exposure by various holographic techniques based 
on external or internal reference beams, but a full three-
dimensional reconstruction will most likely require 
reproducible samples exposed to the beam one-by one, 
and in different orientations. A “reproducible sample” 
(e.g. purified proteins) may contain heterogeneities, 
different subgroups of sample, and distinct conformers of 
the molecule. How reproducible is a “reproducible 
sample” and how well can we distinguish between similar 
and dissimilar structures will affect resolution through a 
B-factor-like component.  

Conventional “single molecule” electron cryo-
microscopy [18,19] faces similar challenges as those 
described here. The basic requirement for reconstruction 
and/or signal averaging from many diffraction images is 
the ability to tell whether two noisy diffraction patterns 
represent the same view of the sample or two different 
views [20].  Huldt et al. [20] have shown that a signal of 
less than one photon per pixel would be sufficient to 
correlate diffraction images of identical particles 
presenting the same view, assuming photon noise only. 
Correlation-based methods to average and orient large 
numbers of noisy, randomly oriented real-space images 
have been successfully developed in the electron 
microscopy community [18,19]. Diffraction patterns are 
first classified into classes of like-orientation so that they 
can be averaged to increase the signal relative to noise. 
The average signal per diffraction pattern at the highest 

 

   

 
 
Figure 3: Intersection of two Ewald spheres with their 
centrosymmetric opposites.  Centrosymmetry gives an 
extra intersect as there are two common arcs of 
intersection in each diffraction pattern (middle). The 
patterns in the middle show the expected arcs of 
intersections in two diffraction patterns from the 
experimental pyramid X-ray diffraction data set from 
Figure 10.  Patterns at the bottom show these very lines of 
intersections when the experimentally obtained patterns 
are subtracted from each other pair wise (Huldt et al., in 
preparation). 
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resolution, required for classification, is found to be much 
less than one photon per pixel, and an incident fluence of 
108 ph/nm2 is sufficient to achieve atomic resolution for 
particles greater than 15 nm radius [20].  

Averaged diffraction patterns must be oriented with 
respect to each other in 3D Fourier space, which may be 
achieved by the method of common lines, a technique 
widely used in electron microscopy, where the 
micrographs represent planar sections through the center 
of the molecular transform.  X-ray diffraction patterns are 
recorded on the Ewald sphere and so two patterns of 
different orientations will intersect along an arc in 
reciprocal space that passes through the zero spatial 
frequency. If the signal is strong enough for the line of 
intersection to be found in two averaged images, it will 
then be possible to establish the relative orientation of 
these patterns. We note that due to the curvature of the 
sections (especially at X-ray wavelengths), the common 
arc will provide a three-dimensional fix rather than a 
hinge-axis. Moreover, since the electron density of the 
object is real, its molecular transform exhibits 
centrosymmetry.  This symmetry ensures that we obtain 

two independent repeats of the common lines in the two 
images. This feature provides redundancy for determining 
sample orientation, and is unique to diffraction patterns 
(Figure 3).  

Resolution for reproducible particles 
A combination of results from the hydrodynamic 

continuum model [15] with the diffraction pattern 
classification model of Huldt et al. [20] allows one to map 
out the landscape of imaging resolution, molecule size 
and pulse requirements [21]. The results are shown in 
Figure 4, which show that it will be possible to image 
single molecules at very high resolutions with very short 
pulse durations (atomic resolution with pulses less than 
about 5-10 fs).  

First, the optimal photon energy for diffraction imaging 
was estimated by maximizing a figure of merit (FOM), 
defined as the ratio of signal minus noise to the radiation 
damage. As shown in Figure 4a, for pulses shorter than 
the Auger decay time (~10 fs for C), the optimum photon 
energy is 8 keV, and for longer pulses it is 13 keV, 
although the peak FOM is much smaller. Figure 4b shows 

(a) (b)   
 

(c)    (d)  
 
Figure 4: Resolution vs. radius for different X-ray fluences. (a) FOM for imaging conditions as a function of photon 
energy. (b) X-ray fluence requirements to classify two-dimensional diffraction patterns of biological molecules 
according to their orientation with 90% certainty. The curves are labeled with the X-ray fluence in units of photons in a 
100 nm spot.  (c) Plot of achievable resolution vs. molecule size for various pulse durations as limited by damage and 
classification. Atomic resolution imaging is achievable with pulse durations less than 5 fs and fluences greater than 1012 
photons per 0.1 micron spot size.  (d) Pulse duration requirements are significantly relaxed for samples that give 10 
times larger scattering signal (e.g. viruses or nanocrystals) [21]. 
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the required x-ray fluence versus image resolution length 
and particle radius, required to achieve a large enough 
diffraction signal to classify the patterns. Figure 4c shows 
the pulse length requirements for x-ray imaging biological 
molecules with 12 keV photons, assuming no pre-
orientation of the molecules. When the fluence 
requirements are relaxed by orienting molecules with 
laser fields, using nanocrystals containing only a small 
number of molecules, or helical molecules, or icosahedral 
virus particles up to 10-20 times longer pulses can be 
tolerated, see Figure 4d.  

IMAGE RECONSTRUCTION 
A number of methods exist for recovering phases for 

objects that have a finite size, or “support”. These include 
oversampling of continuous molecular transforms [4,22-
25], holographic imaging methods [26-28], holographic 
data evaluation methods [29,30], classical methods of 
crystallography, and techniques for phase extension from 
lower resolution electron/X-ray cryo-microscopy images.  

The past few years have seen the development of robust 
algorithms in solving the phase problem through 
oversampling the diffraction pattern, and this seems to be 
a most promising technique for the future. The 3D 
diffraction transform of a non-periodic particle is 
continuous. Only the diffraction amplitudes are sampled 
at discrete points by the pixellated detector and the 
process of classification. The measured diffraction 
intensities are proportional to the modulus squared of the 
Fourier transform of the wave exiting the object. On their 
own, these diffraction intensities are insufficient to back-
transform to form an image in real space. That inversion 
requires knowledge of both the diffraction intensity and 
phase. If the diffraction pattern intensities are sampled 
finely enough, then it is possible to solve for the 
diffraction pattern phases [22,23]. The solution to this 
non-linear inversion problem is usually obtained 
iteratively by sequentially enforcing known constraints in 
reciprocal space and in real space. Specifically, in real 
space we assert that the image has zero scattering strength 
outside the area of the object’s boundary (called its 
support) [23], whilst in reciprocal space the squared 
modulus of the Fourier transform of the image must equal 
the measured diffraction intensities. Such algorithms have 
now been used successfully for image reconstruction in 
X-ray diffraction experiments [4-6,31-34]. An example of 
a reconstructed 3D image is shown in Figure 5.  

The algorithms usually require that the support of the 
object be known a priori, and the closer the support to the 
actual object boundary, the better the reconstruction. The 
algorithm called SHRINKWRAP successively refines an 
estimate of the support from a current estimate of the 
image [5]. This algorithm does not require the support to 
be known and is remarkably robust at finding the smallest 
image support that contains the majority of the image 
intensity. 

 
 
 

 
 

 
 
 
 

Figure 5: Coherent diffraction imaging and image 
reconstruction [6]. Three-dimensional diffraction data 
(middle) recorded from a test object (top), consisting of 50-
nm diameter gold balls on a silicon-nitride pyramid-shaped 
membrane, at a wavelength of 1.6 nm, and a rendering of 
the ab initio 3D image (bottom) reconstructed from the 
diffraction intensities to a resolution of 10 nm. The 
diffraction data were obtained by rotating the specimen in 
1° increments from -70° to +70°, and then interpolated onto 
a 10243-element array. A quadrant of the diffraction dataset 
has been removed for visualization in the central rendering 
of the 3D diffraction intensities. The gold balls seen in the 
rendering of the 3D reconstructed image on the right fill the 
inside edges of the silicon-nitride pyramid. The scale bar is 
1 micron. 
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EXPERIMENTS AT FLASH 
Experiments were carried out at FLASH (Free-electron 

LASer at Hamburg, formerly known as the VUV-FEL).  
During the experiments the machine operated at a 
wavelength of 32 nm and in the ultrafast pulse mode of 
25 ± 5 fs duration [36]. The pulses were focused to a 
20 μm spot on the sample by an ellipsoidal mirror [37], 
achieving intensities up to about 1014 W/cm2.  We carried 
out experiments to demonstrate ultrafast coherent 
diffraction imaging and to study the interaction of matter 
with FEL pulses, in order to constrain our models to 
determine ultimate resolution limits with XFELs. 

Our experiments at FLASH depend critically on being 
able to measure the forward scattering from samples with 
high sensitivity and low noise or parasitic scattering. The 
main experimental challenge was to prevent the direct 
beam from hitting the direct-detection CCD and to 
prevent out of band radiation (plasma emission from the 
sample) or non-sample scatter from obscuring the 
coherent diffraction signals.  We solved these problems 
using a flat mirror oriented at 45° to the beam.  The direct 
beam passes through a hole in the mirror whereas the 
diffracted beam is reflected from the mirror onto a bare 
CCD.  The camera records diffraction angles between      
–15° to +15°, which requires a multilayer coating on the 
mirror that varies in layer spacing by a factor of two over 
a distance of only 28 mm (Bajt et al, in preparation). The 
multilayer coating was challenging because of the low 
absorption length of materials at 32 nm wavelength.  We 
designed a coating consisting of three layers (Si, Mo, and 
B4C), which simultaneously met the requirements of low 
stress, high reflectivity at 32 nm, and high reflectivity at 
the characterization wavelength of 0.154 nm.  An 
advantage of the multilayer mirror is that it acts as a 
bandpass filter both for wavelength and direction.  Plasma 
emission from the sample in the UV and visible ranges is 
rejected by the mirror.  Stray light, from the scattering of 
beamline optics for example, hits the mirror at an angle 

that does not obey the Bragg law, and hence are also 
filtered out.  Additionally, the mirror reflectivity 
diminishes smoothly to zero at the edge of the hole, due 
to roughness of the substrate at the edge.  This “soft edge” 
reduces scatter from the hole. 

We have performed several experiments using this 
apparatus, which will be reported on in forthcoming 
publications. 
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