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Abstract 
We derive a simple analytical solution for the non 

linear steady state regime of the high gain Free Electron 
Laser (FEL) and Collective Atomic Recoil Lasing 
(CARL) model which up to now have been described 
only numerically.  

INTRODUCTION 
In this paper we show that the Free Electron Laser 

(FEL) [1] and the Collective Recoil Atomic Laser 
(CARL) [2] can be described by an exact reduced 
Hamiltonian which does not contain the field explicitly. 
We give simple analytical expressions for the field 
amplitude, frequency shift, bunching factor, particle 
average momentum and momentum spread, as well as the 
period of oscillations around the quasi steady state 
solution, in very good agreement with the numerical 
values.  

THE MODEL 
As it is well known very different systems as a high 

gain FEL and CARL can be described by the same 
classical 1D model. In the steady state approximation, 
neglecting propagation effects, the model equation can be 
written:  

  j jpθ =&  (1) 
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where θ is the particle (electron or atom) phase in the 
ponderomotive potential, A is the radiated field and p is 
the momentum recoil in proper adimensional units [1,2].  
The derivative are taken to respect to the coordinate along 
the wiggler for the FEL and respect to time for the CARL 
in adimensional units. For simplicity, we have assumed 
resonance condition.  

Separating amplitude and field phase one has:  

 iA ae ϕ=  (4)  

Changing the sign of pi and θi , and defining the 
“position”  

2/πϕθ +−= iiq  (5)

 

Eqs. (1) - (3) can be written in the compact form: 
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Eqs.(6)-(8) are equivalent to Eqs.(1)-(3). Keeping in 
mind that Eqs.(1-3) admit a constant of motion, the total 
momentum, 2 0A p const+ = = , i.e.,    

 a p= . (9) 

We have assumed, for simplicity, that the constant is zero. 
The positive recoil is counterpropagating to the electron 
beam in a FEL and in the direction of the pump field for 
CARL.   

Inserting (4) in Eq.(3) one obtains 

 
cos q

p
ϕ =& . (10) 

We stress that Eqs.(6,7) describe a pendulum with a self 
consistent frequency formally eliminated, with no 
approximation. They are completely equivalent to Eqs. 
(1-3) even if the field does not appear explicitly. 
However, its amplitude and phase can be exactly 
calculated from the solution of Eqs.(6) and (7) using 
Eqs.(9) and (10). The reduced Hamiltonian (8), which 
originates Eq.(6) and (7), represent the system in which 
the field has been exactly eliminated using the constant of 
motion and redefining the total phase q.  

As it is well known, Eqs. (1)-(3) or (6)-(7) admit the 
unbunched equilibrium solution with a p= = 0 and 

cos 0q = . However, this is an unstable solution. In fact, 
if one linearize Eq.(1)-(3) around this equilibrium 
situation one gets the well known 3rd order equation for 
the field A [1,2]:  

 

0A iA− =&&& .  
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This equation admits the run away solution i te λ , where λ  
are the roots of the characteristic equation 3 1 0λ + = , i.e., 

2/32/1,1 i±−=λ . Therefore, the system evolves 

exponentially with rate 3 / 2  to a non linear regime in 
which it oscillates around a quasi state situation. This non 
linear regime has been describes only numerically [1,2].  

In this paper we give a simple analytical derivation of 
the quasi steady state solution.  

Note that Hamiltonian (8) contains the potential 

 2 cosV p q= −  (11) 

that has a minimum at  

 0q = . (12) 

This is clearly a STABLE equilibrium point. 
With this in mind, let us assume bunching around this 
equilibrium point, i.e.,  

 0sin ≈q  (13) 

 bq ≈cos  (14) 

Here b is by definition the bunching factor, which is a real 
number such that 0<b<1. Equation (13) and (14) are the 
basic assumption of our treatment. Note that (13) implies 
only a symmetrical distribution around the equilibrium 
(12).  

EQUILIBRIUM SITUATION 
We now describe a equilibrium situation in which p  

and q  are constant. Therefore, using (13) and (14) in 
Eqs.(6)-(7), one obtains:  

 /p b p=  (15)  

Therefore, one has  

 2 / 3 2 0p b a ϕ= = = >&  (16) 

where Eq.(10) and (14) have been used.  
Eq. (16) establish a very useful identity between the 

average momentum and ϕ& , and their relation with the 
bunching. Note that the assumption q  equal a constant, 
looking at Eq.(5),  is equivalent to assume that the 
average electron phase is locked to the field phase. 

The fact that the frequency shift, ϕ& , is always positive 
is in agreement with the numerical solution and 
demonstrate analytically that FEL and CARL in the high 
gain steady state regime behave as an optical fibre, i.e., a 
medium with a refraction index larger than one [3]. 

Using the fact that the Hamiltonian (8) is a constant of 
motion, which for simplicity we take to be zero, we can 
write 2 4 cosp p q= , using Eqs.(14) and (16), and 

2 4 / 34p b= .  Hence, using (16), we have  

 22 2 / 3( ) 3p p p bσ = − = .  (17)  

Eq. (17) gives a relation  between the energy spread and 
the bunching. 

Equation (16) and (17) are the basic result of this paper, 
because it gives the analytical expression for field 
amplitude and frequency shift and for the momentum 
spread as a function of the bunching in the non linear 
quasi steady state situation. 

The problem is: what is b? Looking at the numerical 
solution, one sees that in the non linear regime, the 
various quantities are oscillating around some mean 
values, as it must be for a system of non linear undamped 
pendulum. The equilibrium mean values are in excellent 
agreement with the above estimate, if one takes  

 0.5b =  (18) 

A rigorous justification of this choice will be given in the 
following. In fact, with this choice, using Eq.(16) and 
(17), one obtains  

 2 2 / 3 0.6p a bϕ= = = =&  (19) 

and  

 1≈pσ . (20) 

These values are in excellent agreement with the average 
values of the oscillating numerical solution, as shown in 
Fig.1b,c.  

Summarizing, the physics we have demonstrate above 
is that of an undamped pendulum which oscillates around 
the stable equilibrium value in a self consistent potential 
(11). The self consistent pendulum frequency is given by  

 2 1/ 32 2p bω = = .  

Hence, the period of the equilibrium “synchrotron” 
oscillation, using Eq.(18), is given by 

 522
6/1 ≈==

b
T π

ω
π

. (21) 

This value is in very good agreement with the numerical 
simulations, shown in Fig.1a. 

The value of b=0.5, which is the unique assumption of 
this paper, can be justified as follows:  
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Using Hamiltonian (8) it is simple to see that at the 
inversion point of the pendulum motion one has the 
relation ( )2 4 1 cosp p q= − . Using Eq.(16), and 

2 4 / 34p b= , one obtains 1b b= −  i.e.,  

 0.5b =  (22)  

We stress that this is the average value of the bunching, 
which is an oscillating quantity. The analysis can be 
easily extended to the detuned case. 

CONCLUSIONS 
In conclusion, classically the FEL and the CARL can 

be described by a reduced Hamiltonian from which the 
field amplitude and phase have been formally eliminated. 
This Hamiltonian system presents two equilibrium 
situations. The first one (the physical initial condition) is 
that of an unbunched system with uniformly distributed θ, 
with zero field and zero average recoil. However, this 
situation, at resonance, is unstable and the system evolves 
with an exponential instability to a “quasi equilibrium 
state” in which the system oscillates as an undamped 
pendulum around some average values. This non linear 
quasi “equilibrium”, to our knowledge, has been only 
numerically described up to now. 

In this paper we have given explicitly analytical 
expressions of all the average values of the physical 
quantities, including the period of oscillations, in 
excellent agreement with the numerical simulations as 
shown in Fig. 1. 

 

 
Figure 1: Numerical solutions of equations (1-3) for (a) 
field amplitude a p= , (b) momentum spread pσ  , (c) 

bunching  b, and (d) phase derivative ϕ& . The calculated 
mean values (dotted lines) are, respectively  0.8, 1, 0.6 
and 0.6. 
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