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Abstract 
The unusually long insertion devices being prepared for 

Angstrom-wavelength Free Electron Lasers (FELs) will 
generate spectral-angular distributions in the proposed 
experimental areas substantially different from those 
conventionally calculated for the far field. In this paper 
we report on computational simulations of near vs. far 
field distributions for the SLAC linac Coherent Light 
Source (LCLS) undulator, an insertion device 
approximately 140 meters long. The properties of the 
coherent radiation as a limiting case of the near-field 
emission, for the special condition of a microbunched 
beam radiating along the undulator axis, are reviewed. 

INTRODUCTION 
A number of the pending or proposed generations of 

synchrotron radiation (SR) research facilities centered on 
linac driven Ångstrom-wavelength Free Electron Lasers 
(FELs) operating in the Self-Amplified Spontaneous 
Emission (SASE) [1] regime will feature undulators of 
unprecedented length. For example, the SLAC Linac 
Coherent Light Source (LCLS) is being developed around 
a 140 meter long device [2], while the DESY-based 
TESLA FEL facility has proposed a multi-undulator 
switchyard with device lengths ranging from ~100 meters 
to more than 300 meters [3,4]. In contrast to storage ring 
based undulator beam lines, on which the distance from 
the undulator to the experiment is typically approximately 
10 times (or more) greater than the insertion device 
length, the corresponding factor for both the LCLS and 
some of the TESLA beam lines will be substantially 
smaller. In the case of the LCLS, for example, the nearest 
beam diagnostics detectors could be located as a close as 
~10–40 meters from the undulator exit, while the farthest 
possible experimental location will still be less than 6 
insertion device lengths away from the undulator exit. For 
such significantly reduced distance/length ratios it is no 
longer possible to represent, in general, the spontaneous 
radiation emitted by an electron passing through the 
undulator by the conventional far-field formalisms widely 
employed at present-day storage ring Synchrotron 
Radiation (SR) facilities [5] and a revised formalism 
accounting for the detailed near-field characteristics of the 
emitted radiation must be developed [6].  

In this paper the structure of one such formalism will be 
outlined and a set of illustrative spontaneous radiation 
calculations contrasting the far-field vs. near-field 
spectral-angular distributions of the LCLS will be 
presented. The significance of the results for simulations 
of the full LCLS FEL spectrum will be discussed and a  

  
 
 

systematic algorithm for accomplishing this will be 
outlined. 

NEAR-FIELD VS. FAR-FIELD REGIMES: 
GEOMETRICAL DEPENDENCE 

A conventional representation of an observation plane 
centered at normal incidence on an undulator axis is 
shown in Fig. 1. P denotes the on-axis observation point, 
P’ a general off-axis observation point, and d the distance 
from the axis to P’. Our conventional assumption will be 
that an electron enters the undulator at A, passes through 
N periods of length λu, emerges at B, and that it is 
accelerated, i. e., emits radiation, only between A and B. 

 
Figure 1: Near-field effects of an N-period undulator. 
ABP’ is rotated about AB to lie in the plane of the paper. 

To illustrate the different types of near-field effects and 
the parameters that govern them, the initial and final 
signal waves emitted by the electron as it passes points A 
and B along the undulator axis are represented by 
spherical wavefronts. We note that, apart from the 
geometry, the average velocity of the electron through the 
undulator will evidently also determine the time interval 
between the wavefronts observed at either P or P’ and, of 
course, the detailed (instantaneous) spectral-angular 
distribution of the observed radiation. 

Referring to the above construction, the following 
geometrical effects on the radiation observed at off-axis 
observation point P’ can be identified: 

 
a. a wavelength chirp as the wavefronts from the N successive 

periods of the undulator arrive at P’, the first one along 
P’A’ and the final one along P’B’. This chirp disappears at 
P. 

b. a corresponding angular chirp of the incoming Poynting 
vector at P’, which also disappears at P. 
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c. for a fixed-area infinitesimal aperture at P’, the electric field 
amplitude of the normal component of the observed 
radiation-field wavefront 1 is inversely proportional to r1 
and directly proportional to a factor of between 1 and 
cos θ2. Similarly, the normal component of wavefront 2 is 
inversely proportional to r2 and directly proportional to a 
factor of between 1 and cos θ1. Thus, under the condition 
cos θ2~ cos θ1~1, the net result is a field amplitude chirp at 
P’ that is inversely proportional to the monotonically 
decreasing radii of the N successive wavefronts impinging 
on the observation aperture. This chirp (of geometric origin) 
is present in addition to the spectral-angular amplitude 
variation associated with the strongly anisotropic spectral-
angular distribution of a relativistic electron’s emitted 
radiation. As opposed to effects a. and b., this (radius-
dependent) amplitude chirp is always observed at P. 

 
With regard to the construction parameters in Fig. 1, we 

can straightforwardly establish conditions under which 
these effects constitute only small departures from a far-
field spectral-angular distribution. For specificity, we 
consider the undulator’s fundamental line, for which the 
far-field bandwidth and angular full width at half-
maximum (FWHM) are give by, respectively, 1/N, and 

(2 + K 2 ) / N / γ , where K ( ≅ 0.934B[T ]λu[cm] ) is the 
undulator parameter; B is the undulator field amplitude; 
and γ is the Lorentz factor of the bunch [7].  Thus, for the 
amplitudes of wavefronts 1 and 2 to attain a relative 
difference of η1 or less at P, we find 
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For an angular chirp AT P’, relative to the (far-field) 
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Where γ * = γ 1 + K 2 / 2 , and for a corresponding 
wavelength chirp at P’, relative to the (far-field) 
bandwidth 1/N, of  η3 or less,  
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N ≤ η3

 .                  (III) 

Considering the LCLS, numerical values for each of 
these parameters are readily computed and demonstrate 
that at all the experimental or diagnostics locations within 
the boundaries of SLAC near-field effects will 
significantly influence or dominate both the spontaneous 
and coherent spectral-angular distributions [8]. These 
results, which also illustrate the decreasing influence of 
near-field effects vs. increasing distance from the 
undulator exit, tend to corroborate the commonly 
accepted practice of disregarding near-field effects for 
dimensional ratios D/L>10 and observation points not too 
far off the axis, conditions pertaining to most present-day 
storage ring undulator beam lines (however, in this regard 
see [9]), and this implies an analogous scaling of D into 
the several-kilometer regime in order for the x-ray SASE 
FELs of the present era to operate in the sane limit. 

NEAR-FIELD VS. FAR-FIELD REGIMES: 
ANALYTICAL FORMULATION 

To construct the analytical formalism for calculating the 
spectral-angular flux distribution observed at P’ we refer 
to the general vector parameters shown in Fig. 2. For our 
purposes we will locate the fixed point O midway 
between A and B on the undulator axis (see Fig. 1) and 
assume P’ to be located in the observation plane, which 
lies normal to the undulator axis. Given these assumptions 
it is evident that the average direction of the trajectory 
vector r will be parallel to the undulator axis and that the 
deviation from parallelism for practical undulator and 
electron beam parameters will be very small.  

 
Figure 2: Vector construction and analytical parameters 
used for calculating the radiation from an accelerated 
electron at P’. 

Given the fact that most practical experiments accept 
synchrotron radiation through an aperture of fixed area 
and position and that both the direction and location of 
the electron with respect to such an aperture can vary 
considerably in the near field, the concept of a fixed solid 
angle defined by the aperture with respect to the electron 
becomes indefinite over the course of its acceleration. 
Due to this, the near-field formalism most appropriate for 
evaluating the flux impinging on the aperture should 
directly evaluate the Poynting vector of the electron’s 
radiation at P’. This means that the temporal signal of 
interest will be the retarded electric radiation field (since 
the Poynting vector can be calculated directly from it) and 
that the corresponding spectral signal observed at P’ will 
be just the Fourier transform of this retarded electric field. 
Formulas for the spectral-angular distribution associated 
with the retarded radiation field of an electron have been 
discussed by a number of prior authors, e.g., Jackson [10], 
and we present a related formulation applicable to the 
parameter range we are investigating here: 

2
1

2 2

2

2 ( ' [ ( ') / ])
ˆ ˆ( )( ) '

ˆ( / ) 4 (1 )
if t R t cdI f q f dt

d df f c R
e π

π

∞

−∞

+
⎡ ⎤× − ×⎣ ⎦=

Σ − ⋅∫
&β β

β
n n

n
. (1) 

Here the units of the spectral-angular density are Joules 
per second per unit area per unit bandwidth, dΣ denotes a 
unit increment of area lying in the observation plane at 
P’, / c= &β n , / c=& &&β n , t’ is the retarded time at which all 
the parameters in the integrand of (1) are evaluated, and 
the physical constants are in MKS units. For simplicity, 
an inclination factor accounting for the angle of incidence 
and polarization of the radiation falling on Σ has been 
omitted, as for the majority of practical x-ray FEL 
configurations the deviations of this angle from normal 
incidence will be very small. As R increases to the point 
that it becomes approximately constant over the length of 
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the undulator, it can be shown [8] that expression (1) 
begins to approximate to the conventional spectral-
angular distribution widely utilized for calculations at 
most present-day storage ring installations [11,12]. 

CALCULATIONS OF LCLS 
SPONTANEOUS RADIATION IN THE 

NEAR-FIELD VS. FAR-FIELD REGIMES 
Although it is possible to integrate (1) directly for an 

arbitrary trajectory vector r, a substantial algorithmic 
simplification can be achieved by taking advantage of the 
natural periodicity of the undulator field. For example, for 
an N-period device (with N large enough to allow 
omission of a detailed description of the end-field regions 
without affecting the required accuracy or validity of the 
computed spectra), (1) can be rewritten as 
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In the case of the LCLS, it is then readily apparent 
that even at the closest distance of a detector to the 
undulator exit (viz., ~10 m) the condition D>>λu will 
apply, i.e., the radiation arriving at Σ from each individual 
undulator period can be accurately described by its far-
field form. This leads to the following expression, whose 
integral is readily computable with well-known and 
relatively straightforward numerical algorithms [12]. 
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For the LCLS, whose current design features a 3 cm 
period and thirty-three 4-m-long field segments 
interleaved with thirty-two 30 cm long drift spaces [2], 
the form of (9) is optimal, as the drifts are approximately 
10λu long and the algorithm simply sets the acceleration 
to 0 as the particle moves through each drift section. In 
practice, rather than calculating each period, the 
undulator, as well as the drifts, can each be subdivided 
into longer segments Lu’ and LD’, with D>> Lu’, LD’, to 
further economize the computation. 

In Figs. 3–5 both the far-field and near-field angular 
flux distributions of the LCLS fundamental corresponding 
to (3) are plotted for the nominal operating current of the 
LCLS (3400 A) at three different distances (9 m, 40 m, 
and 380 m) from the undulator exit for a limiting 
operating energy of 14.34 GeV. No FEL bunching is 
assumed and electron beam emittance effects are not 
included. We note that the abscissas display distance 
away from the undulator axis, along the horizontal axis of 
observation (i.e., for y=0) in the observation plane. In this 
regard, it should be emphasized that the ordinate units 
have a well-defined meaning only for the far-field curve 
displayed in each graph; a more complex interpretation is 
required for the near-field curves. With regard to the 
curve shapes, we 

 
Figure 3: Far-field vs. near-field flux distributions of the 
LCLS fundamental. E=14.34 GeV, Iu=3400 A. 

 

Figure 4: Far-field vs. near-field flux distributions of the 
LCLS fundamental. E=14.34 GeV, Iu=3400 A 

 
Figure 5: Far-field vs. near-field flux distributions of the 
LCLS fundamental. E=14.34 GeV, Iu=3400 A  

first note that the far-field-curves at each energy are 
identical in angular profile and amplitude regardless of 
distance away from the undulator exit, as expected. The 
deviations of the near-field curves’ shapes from those of 
the far field are seen to be primarily governed – for the 
particular range of parameters chosen – by criterion I, 
viz., the effect of amplitude variation of the radiation 
arriving at the observation plane, i.e., due to the strongly 
varying relative distances of successive segments of the 
undulator from the detector. This causes the spectral-
angular distribution to be dominated by the undulator 
sections closest to the observation point, and since their 
total number of periods is necessarily < N, the 
corresponding spectrum is both attenuated and broadened. 
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LCLS COHERENT VS. SPONTANEOUS 
RADIATION SPECTRA 

In view of the fact that a SASE FEL accepts no external 
(exogenous) radiation, it can be shown that the amplitude 
of the total radiation field must be strictly equal to the 
linear superposition of the amplitudes associated with the 
individual bunch electrons. If we interpret each amplitude 
to be a functional of its associated electron’s trajectory 
vector rn (where n is used to index the Ne bunch 
electrons), we obtain 
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To derive rn for any particular FEL electron, the 
conventional analytical procedure is to solve the non-
linear equations governing the dynamics of the FEL gain 
process (q.v., e.g., [1]). Common to many such analyses 
is the representation of the bunching process as an 
instability in the electron beam current that develops in 
response to the interaction of random density fluctuations 
in the electron bunch with the undulator field.  In this 
regard, the corresponding analyses of the bunching 
dynamics typically focus on fields averaged over large 
sub-populations of the bunch’s electrons, i.e., the derived 
parameters governing the bunching process are 
themselves inherently statistical in nature. This stricture 
applies equally to most of the FEL computer simulation 
codes in present use, where it still remains infeasible to 
iterate Ne

2 equations (for Ne~107–109) through a several-
thousand period undulator, in consequence of which the 
inherently statistical construct of a “macroparticle” is 
employed to simulate the approximate average effects of 
bunching on a particle trajectory. In view, then, of the 
statistical nature of presently available SASE FEL 
bunching parameters, it appears reasonable to consider 
them, along with (4), as a basis for comparably valid, yet 
substantially more economical, Monte Carlo simulations 
of the spectral-angular output of a SASE FEL.  

As has been shown by a number of prior authors (e.g., 
[13]), the rn of a SASE FEL electron in fact differs very 
little from its unmodulated trajectory (which faithfully 
tracks the undulator’s periodic field profile). The basic 
FEL departure from this ideal periodic profile can be 
represented as a longitudinal position-energy modulation 
of the trajectory’s sinusoidal components. If the undulator 
field is sinusoidal, the analytical description of FEL 
bunching becomes closely analogous to that of a Phase 
Modulated (PM) wave [14]. Thus, an electron trajectory 
in an FEL can be approximated by a phase-space 
modulated periodic trajectory depending on essentially 
three constituents:  1) the distribution of longitudinal 
positions and energies in the undulator at which the phase 
space modulation starts; 2) the set of phase space 
distributions toward which the particle’s longitudinal 
position and energy tend; and 3) the distribution of time-
dependent amplitudes and functional profiles of the phase 

space motion between the starting positions and energies 
and those at the undulator exit. Given that these three sets 
can be represented by a sufficiently small set of statistical 
parameters (derivable, in principle, from the equations 
governing SASE FEL dynamics), a representative 
spectral-angular SASE FEL distribution from a SASE 
bunch can then be computed in a time ~proportional to 
Nc, the number of electrons in a cooperation length [13]. 
The incorporation of such parameters into rn and 
numerical studies of how they combine to define the 
coherent line output of the LCLS will be pursued in future 
studies. 
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