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Abstract

We present a one-dimensional time-dependent analysis
and simulation of Smith-Purcell (SP) free-electron lasers
(FELs). The coupled Maxwell-Lorentz equations are set
up, and the details of numerical simulation are presented.
At low electron beam energy, a SP-FEL is a backward wave
oscillator (BWO), and oscillations can be achieved without
the need for feedback mirrors. In the linear regime, we
show that the optical power grows exponentially if the cur-
rent is larger than a certain value, the start current. Results
of our numerical calculation compare well with the ana-
lytic calculation in the linear regime and show saturation
behavior in the nonlinear regime.

INTRODUCTION

An electron beam traveling close and parallel to a met-
talic grating, with grating rulings perpendicular to the elec-
tron motion, gives off polarized electromagnetic radiation
known as Smith-Purcell radiation [1]. A Smith-Purcell
free-electron laser (SP-FEL) based on this effect is inter-
esting as a possible compact source of tunable, coherent
THz radiation [2,3]. Analytic theory of SP-FELs in the
linear regime has been discussed by several authors [4-6]
under different approximations. Here, we present a fully
self-consistent nonlinear analysis, which can be used to un-
derstand the saturation behavior and simulate the realistic
effects; coupled Maxwell-Lorentz equations for an SP-FEL
driven by sheet beam are derived and solved numerically to
perform detailed analysis.

BASIC THEORY

Figure 1 shows the schematic of the SP-FEL setup. We
assume the system to have translational invariance in the y-
direction. The electron beam travels with a speed v along
the z-axis, at a height b above the grating of length L, hav-
ing grooves of depth d, widthw and period λg . For our cal-
culation, we use the parameters corresponding to the Dart-
mouth experiment [2], which are β = 0.35, λg = 173 μm, d
= 100 μm, w = 62 μm, L = 12.7 mm and b = 10 μm. Here,
β is the electron velocity in units of c, the speed of light.

As shown in Refs. 6 and 7, the grating supports a surface
mode at a resonant frequencyω, consisting of various order
space harmonics, each one decaying along the x-axis. The
zeroth order space harmonic co-propagates with the elec-
tron beam. The dispersion relation of the surface mode is
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plotted in Refs. 6 and 7. As was first noted in Ref. 6, for
the above parameters, the group velocity is negative and the
system is a BWO. The magnitude vg of the group velocity
was calculated to be 0.53 times c for the above parameters.
This is in contrast with conventional FELs, which work like
a traveling wave amplifier (TWA). For a BWO, the energy
emitted by the electron beam flows backward and bunches
the incoming electrons. This feedback mechanism gives an
oscillator-like action, and the optical power builds up more
around the frequency of the surface mode. The calculation
of the eigenfrequency of the surface mode is discussed in
Refs. 6 and 7, and the free-space wavelength λ of the sur-
face mode defined as 2πc/ω was obtained to be 690 μm for
the above parameters.

Figure 1: Schematic of an SP-FEL using a sheet electron
beam. The sheet electron beam is in the plane x = 0.

Due to the interaction with the surface mode, the elec-
tron beam current develops the stongest Fourier compo-
nent around the frequency ω. Expanding the surface cur-
rent density in the Fourier series and keeping the term at
ω, which will have the strongest interaction with the sur-
face mode, we can write the surface current density as
K(z, t)ei(ksz−ωt) + c. c and K(z, t) = (I/Δy)〈e−iψ〉,
where 〈· · ·〉 implies averaging over all the electrons over
one wavelength. Here, ks = ω/v and Δy is the width of the
sheet electron beam in the y direction, and ψ i is the phase
of the ith electron, which is ω(z/v − ti), where ti is the
time at which ith electron reaches z.

Let us first determine the electromagnetic field due to
this current sheet in the absence of the grating. We assume
a steady-state behavior and a slow variation in the surface
current density of the type eμz . We can then write the sur-
face current density as K0e

i(α0z−ωt) + c. c., where K0 is
independent of z and t, and α0 = ks − iμ. The Maxwell
equation can then be exactly solved with this surface cur-
rent density and the outgoing wave boundary condition to
give the following expression for the amplitude of the elec-
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tromagnetic field

Hinc
y (x, z) =

1
2
ε(x)K(z)exp[−ε(x)Γ0x], (1)

where Γ0 = (α2
0 − ω2/c2)1/2, ε(x) = −1 for x < 0 and

ε(x) = 1 for x > 0. The electromagnetic field has H-
polarization, which means H inc

x = Hinc
z = Eincy = 0.

Using the Maxwell equation, Ez can be obtained in terms
ofHy by the expressionEz = (i/ε0ω)(∂Hy/∂x−δ(x)K).

When this electromagnetic wave is incident at the grat-
ing surface, it gets reflected at various orders with ampli-
tudes expressed in terms of reflection matrix elements of
the grating [8]. The electron beam interacts only with the
zeroth order wave which co-propagates with it. The ampli-
tude of the axial electric field experienced by the electron
is the sum of the incident and reflected zeroth order wave,
and is given by

Ez =
iIZ0

2βγΔy
(e00e−2Γ0b − 1)〈e−iψ〉, (2)

where Z0 = 1/ε0c = 377 Ω is the characteristic impedence
of free space and ε0 is the permitivity of free space. Note
that the total axial electric field experience by the electron
is given by Eze(iksz−ωt) + c. c.. The matrix element e00

in the above expression is a function of frequency and the
behavior of e00 around the frequency of the surface mode
has been studied in detail [7,8], and it is shown that one can
write e00 = −iχ/μ+χ1. For our parmeters, we obtain χ =
10 per cm and χ1 = 1.35 [7,8]. Using this parametrization,
we can rewrite the above expression as

Ez =
iIZ0

2βγΔy
(
−iχ
μ
e−2Γ0b

︸ ︷︷ ︸+χ1e
−2Γ0b − 1)〈e−iψ〉. (3)

The above expression has two parts. The first part corre-
sponding to the underbraced term is the outgoing evanes-
cent wave, which is a component of surface mode. The re-
maining terms are independent of growth rate and are pro-
portional to the beam current and are identified as space-
charge terms. Let us denote the surface mode component
as E and the space charge component as Esc. In the ex-
pression for E, we can replace μ with the operator d/dz
and obtain the steady-state differential equation for E. In-
corporating the group velocity, this equation is further gen-
eralized to the following time-dependent differential equa-
tion for E:

∂E

∂t
− vg

∂E

∂z
= −IZ0χvg

2βγΔy
e−2Γ0b〈e−iψ〉. (4)

The expression for the space charge field is given by

Esc = − iIZ0

2βγΔy
(1 − χ1e

−2Γ0b)〈e−iψ〉, (5)

Eqs.(4,5) are the Maxwell equations that we will be using
in our analysis.

Next, we discuss the equations for the electron dynam-
ics. We assume the presence of stong focusing field such

that the electron motion is only one dimensional. We de-
scribe the longitudinal dynamics of the ith electron in terms
of phase ψi and energy (in units of rest mass energy) γ i. It
is straightforward to derive the following equation of mo-
tion for the electron in the presence of surface mode and
the space-charge field:

∂γi
∂t

+ v
∂γi
∂z

=
ev

mc2
(E + Esc)eiψi + c.c, (6)

∂ψi
∂t

+ v
∂ψi
∂z

=
ω

β2γ2

(γi − γp)
γp

, (7)

where e is the electronic charge and m is the electronic
mass. Here, the electron velocity v is close to the phase
velocity vp of the zeroth order evanescent component of
the surface mode . Eqations (4-7) are the full set of cou-
pled Maxwell-Lorentz equations, which govern the behav-
ior of the sheet beam SP-FEL with the given boundary con-
ditions. These equations can be solved numerically. Before
proceeding to the numerical solution, we define the follow-
ing new dimensionless variables

ζ = z/L, (8)

τ = (t− z

vp
)
(

1
vp

+
1
vg

)−1 1
L
, (9)

ηi =
ksL

β2γ3
(γi − γp), (10)

E =
4π
IAZ0

ksL
2

β2γ3
E, (11)

Esc =
4π
IAZ0

ksL
2

β2γ3
Esc, (12)

J = 2π
I

IA

χ

Δy
ksL

3

β3γ4
e−2Γ0b, (13)

where IA = 4πε0mc3/e = 17 kA is the Alfven current.
Here, ζ is the the dimensionless distance along the grating,
which varies from 0 to 1. In terms of these dimensionless
variables, the coupled Maxwell-Lorentz equations take the
following form

∂E
∂τ

− ∂E
∂ζ

= −J 〈e−iψ〉, (14)

∂ηi
∂ζ

= (E + Esc)eiψi + c.c., (15)

∂ψi
∂ζ

= ηi, (16)

Esc = i
J
χL

(χ1 − e2Γ0b)〈e−iψ〉. (17)

Using the conservation of energy, we get the following
expression for the power flowing backward in the surface
mode

P

Δy
= 2

βγ

Z0χ

(
mc2β2γ3

eksL2

)2

e2Γ0b|E|2. (18)

Note that, since the power flows backward, the boundary
condition for the field needs to be specified at the exit. For
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our case, since we want to study the growth of signal from
the shot noise, we set E = 0 at ζ = 1.

Equations (14-17) can be linearized around the equilib-
rium solution and can be written conveniently in terms of
collective variables as defined by Bonifacio et al. [9] for
conventional FELs. We can assume a solution of the type
eντΦ(ξ) and evaluate the growth rate ν in time. As shown
in Ref. 7, we find that only if I > Is, do we obtain Re(ν)
> 0. The start surface current density Is/Δy is obtained to
be

Is
Δy

= 7.68IA
β3γ4

2πχksL3
e2Γ0b. (19)

Note that a similar equation was obtained by Swegel for
BWO [10]. For our parameters, we obtain the start cur-
rent density to be 36 A/m. For I/Δy = 50 A/m, we find
ν = 0.62 + i3.17. The real part of ν gives us the growth
rate in time. Converting to physical variables, this gives us
the e-folding time of the power in the surface mode to be
0.17 ns. The imaginary part of ν tells us how much the ac-
tual wavelength is detuned from the resonant wavelength.
Again converting to physical variables, this tells us that the
power will actually build up at 694 microns, rather than at
the resonant wavelength of 690 microns.

NUMERICAL SIMULATIONS

For numerically solving Eqs. (14-17), we use the ap-
proach used by Ginzburg et al. [11] and later also by Le-
vush et al. [12] for BWO. The electron dynamics equations
for a given field distribution along the interaction region are
solved by the predictor-corrector method. Then, knowing
the modified electron distribution in phase space, the field
distribution at the next time step is obtained by solving the
partial differential equation (Eq. 14) by the finite difference
method. In our simulation, we have chosen the step size as
Δτ = 0.01 and Δζ = 0.02. As mentioned in Ref. 11, the
accuracy of this method is O(Δτ 2 +Δζ2), and the method
is stable for Δτ < Δζ.

For initializing the electron beam is phase space, we sim-
ulate the shot noise using the algorithm given by Penman
and McNeil [13], which is commonly used in FEL codes.

We performed a couple of tests on the code we devel-
oped. We first checked for the convergence of the solution
by increasing the number of particles and also by reducing
the step size. Based on this convergence test, we chose the
number of particles to be used in the simulation as 1024
and the step sizes as Δτ = 0.01 and Δζ = 0.02. We also
confirmed that the energy conservation is satisfied in the
code at each integration step.

We now discuss the results obtained using this code. Pa-
rameters used in the simulation are same as discussed ear-
lier in the paper. From the simulation, we find the start
current density to be 37.5 A/m, which compares well with
our analytic calculation. Figure 2(a) shows the growth of
power at the grating entrance for an operating surface cur-
rent density of 50 A/m. We find that the power builds up
and saturates. The power per unit beam width (P/Δy) at

0 1 2 3 4 5 6
Time (ns)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

P/
Δy

 (m
W

/μm
)

     (a)

  

  

 
 

  

 

I/Δy = 50 A/m

I/Δy = 35 A/m

0 4 8 12
z (mm)

0

5

10

15

P/
Δy

 (m
W

/μm
)

(b)

  

  

  

 
 

 

Figure 2: Plots of power per unit beam width in the surface
mode (a) as a function of time at ζ = 0, and (b) as a function
of z at saturation as obtained from the simulation.

saturation is 13.7 mW/μm. We also notice that the power
builds up exponentially with time in the linear regime, and
the power gets e-folded in 0.20 ns, which agrees quite well
with the estimate of 0.17 ns based on analytic calculation
in the previous section. We find that the power saturates in
around 3 ns, which is around 15 times the e-folding time.
As shown in the same figure, for a surface current density
of 35 A/m, which is less than the start surface current den-
sity, we get random noise with a power level 4-5 orders of
magnitude smaller. Figure 2(b) shows the growth of power
along the interaction length after the system has reached
saturation. We clearly see that power starts from zero at ζ
= 1, i.e., at the end of the grating, and grows backward and
reaches saturation at ζ = 0, i.e., at the beginning of the grat-
ing. We also looked at the power spectrum and found that
it is a very narrow spectrum and perhaps the bandwidth is
Fourier transform limited. We found that the power peaked
at 694.5 μm, which means there is a detuning from the res-
onant wavelength as is common in FELs and BWOs. This
detuning agrees quite well with the estimated detuning in
the previous section based on analytic calculation.

Next, we looked at the evolution of longitudinal phase
space. Figure 3(a) shows the phase space when the elec-
trons enter the interaction region and also when the elec-
trons exit the interaction region. The phase space is plot-
ted here after the power has saturated. We clearly see that
electrons get bunched due to the interaction with the sur-
face mode. We plotted the amplitude of the bunching pa-
rameter |〈e−iψ〉| along the interaction length after power
has saturated (Fig. 3(b)). We find that, when the elec-
trons exit the interaction region, they are nicely bunched
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and the bunching parameter is around 0.7. We have noted
that, if the beam current is increased further, although there
is more power generated, the beam gets overbunched and
the bunching factor starts decreasing as happens even in
conventional FELs.
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Figure 3: The phase space (a) of the electron beam at the
exit and at the entrance. The bunching parameter along the
interaction length is plotted in (b) after power saturation.

DISCUSSIONS

Let us first discuss the efficiency for power conversion in
the SP-FEL system. For the 50 A/m case, the beam power
per unit beam width is 1.75 W/μm and the output power per
unit beam width is 13.7 mW/μm. Hence, the efficiency is ∼
0.8%. We can get an analytic estimate for the upper bound
of the efficiency by arguing that the maximum amount of
energy that the electron can lose before saturation is such
that it lags the co-propagating evanescent wave by half a
wavelength during the transit through the grating. If the
change in the velocity of the electron due to losing energy
is Δv, then, as per this argument, ΔvL/v = πv/ω. This
gives us the following expression for the efficiency ηeff :

ηeff =
πcβ3γ3

ωL(γ − 1)
. (20)

Using the above expression, we get an upper bound for the
efficiency to be 2.0%. This compares well with 0.8% ef-
ficiency for 50 A/m case keeping in mind that this is only
the estimate for the upper bound. We also simulated higher
current and found that, for the 120 A/m case, the efficiency
is 1.9%, but power is not stable and shows modulation.

We have so far assumed that the electron beam has infi-
nite extent along the y-axis and so has the radiation beam.

This means that the electron beam overlaps with the radia-
tion beam completely. In practical cases, this is not going
to be so, and, in general, the overlap may not be perfect.
The radiation beam is guided by the grating in the x di-
rection but not so in the y direction. Along the y direction,
the radiation beam will be freely diffracting. The minimum
average rms beam size over the length L due to diffraction
effects is given by

√
λsL/4π [14], which comes to around

500 μm for our parameters. Taking this as the effective
electron beam radius in in the y direction, we obtain Δy =
1 mm. Using this value of Δy, we obtain the start current
to be 37.5 mA. For I = 50 mA, the total power generated
in the surface mode is then obtained to be 13.7 W.

There are several ways in which this power in the surface
mode can be outcoupled to the freely propagating mode
that can be used for experiments [7]. First, a significant
amount of power will get outcoupled to the freely propa-
gating mode at the grating entrance due to diffraction. Sec-
ond, when the electron beam exits the grating, it will emit
coherent diffraction radiation at the metallic edge since it
is bunched. Third, we can have a second grating follow-
ing the first grating with optimized parameters, where the
bunched beam can radiate copiously due to coherent spon-
taneous emission.

To summarize, we have set up and solved the coupled
Maxwell-Lorentz equations for an SP-FEL driven by a
sheet beam. Our numerical calculation compares well with
the analytic solution in the linear regime and shows satura-
tion behavior. The analysis is useful for the design of future
compact THz sources based on SP-FELs.

One of us (VK) would like to thank Y.-C. Chae for useful
discussions on time-dependent FEL simulation.
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