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Abstract 
A simulation of the generation of Smith-Purcell (S-P) 

radiation at terahertz frequencies is performed using the 
two-dimensional particle-in-cell code MAGIC. The 
simulation supposes that a thin (but infinitely wide), 
mono-energetic electron beam passes over a diffraction 
grating. We simulate two configurations, one similar to 
the Dartmouth S-P FEL, with a low-energy continuous 
beam (we use an axial magnetic field to constrain the 
electrons to essentially one-dimensional motion). The 
other is similar to the recent MIT experiment that uses a 
pre-bunched 15 MeV beam. 

INTRODUCTION 
In a recent publication [1] we reported on a simulation 

of coherent Smith-Purcell radiation using a two-
dimensional particle-in-cell code, MAGIC.  The grating 
period and the beam energy were chosen such that the 
radiation produced was in the microwave region, with 
frequency of order 10 GHz.  We remind the reader of the 
S-P relation, ( ) nL /cos/1 φβλ −= , where λ is the 
wavelength, L the grating period, β the relative velocity 
(in a plane parallel to the grating and perpendicular to the 
direction of the grooves), φ the angle of emission (with 
respect to the beam direction), and the integer n denotes 
the order.  Our aim was to verify the analytical model 
proposed by Andrews and Brau [2] and subsequently 
extended by Andrews, Boulware, Brau and Jarvis [3] to 
explain coherent Smith-Purcell radiation. Since our 
previous experience with the code had been in the 
microwave domain, we preferred to work there.  Our 
results do indeed support the viewpoint of Brau and co-
workers, that the mechanism for coherent radiation is the 
bunching of the initially continuous beam by an 
evanescent wave that is significant only in the vicinity of 
the grating. The frequency of this wave is always less 
than the minimum allowed S-P frequency. The process is 
unstable in the sense that the wave bunches the beam, the 
beam drives the wave and growth occurs, both in time and 
along the grating.  Our simulation found that this is what 
happens.  In particular, the frequency and axial wave 
number (in the first Brillouin zone) of the simulated 
grating wave were very close to what the model predicts. 
However, it also revealed two major effects that had not 
been anticipated.  Since our simulated grating has a finite 
length, when the evanescent wave reaches the end, part of 
its energy is emitted as free radiation of the same 
frequency, and part of it is reflected back in the opposite 
direction.  The surprise is that the reflected wave has two 

distinct wave numbers, the original one (which we call 
k+), and a second, (k-) which is the other solution of the 
grating dispersion relation for the same frequency.  The 
same thing happens at the upstream end of the grating, 
and the net result is that four distinct evanescent waves 
are generated, with wave numbers k+, -k+, k-, and -k-. 
Although only the wave with k+ is resonant with the 
beam, the other waves have comparable and even greater 
amplitudes in the neighborhood of the grating.  The 
situation is thus somewhat more complicated than that 
imagined by Brau and co-workers.  As a consequence, the 
radiation emitted at the ends is copious, and its frequency 
is always below the minimum S-P frequency for the 
grating period and beam velocity.  To the best of our 
knowledge, no observation of this radiation has been 
reported by the various groups studying S-P radiation 
experimentally.  However, the two-dimensional nature of 
our simulation requires a beam of infinite width in the 
direction of the grooves.  In practice, we imagine that 
beam at least several wavelengths wide would be 
necessary, but the existing experiments typically use 
narrow round beams.  Thus confirmation of the results of 
our simulation and the validity of the Andrews and Brau 
model will need dedicated experiments with wide beams. 

The main interest in S-P FELs is the possibility they 
offer of being compact, powerful and tunable sources of 
THz radiation.  An example is the on going Dartmouth 
College experiment [4], initiated by Walsh many years 
ago, and often reported on in this series of conferences.  
This experiment typically uses optical gratings of period 
0.17 mm, and beam energies in the range 30-50 keV.  To 
reach THz frequencies only the lowest S-P orders are 
needed.  Quite recently a new direction was opened by a 
group at MIT [5] using the beam from a linac operating at 
17.14 GHz, that delivers pulses of duration 1 ps.  The 
beam energy was 15 MeV, and the grating period was 1 
cm.  Here the THz domain requires high orders near 90°.  
An important issue in both of these experiments is 
coherence.  According to ref. 3, there are two distinct 
concepts involved, intra-bunch and inter-bunch 
coherence.  The former obtains whenever the physical 
size of an electron bunch is small compared to the 
wavelength of the radiation observed.  Then the fields 
created by each electron in the bunch add up, and the total 
power radiated will be proportional to the square of the 
number of electrons per bunch.  This occurs for all 
wavelengths such that the ratio of bunch size to 
wavelength is <<1.  Inter-bunch coherence requires, in 
addition to the bunch-size criterion, that the contributions 
of successive bunches add coherently at the observation 
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point.  This occurs whenever the frequency of the 
bunches (inverse of the time interval between two 
successive bunches) is equal to the frequency of the S-P 
radiation. This is never true for the fundamental, but since 
bunching is non-linear, higher harmonics may also appear 
in the current.  When this happens coherent S-P radiation 
may occur at angles φ and order n such that 

( )φβπω cos/1/2 −= Lcnevm . In this expression ωev is the 

frequency of the evanescent wave, and m is an integer. 
In the Dartmouth experiments, with an initially 

continuous beam, the intersection of the beam line and the 
grating dispersion relation determines the operating point, 
i.e., the frequency of the evanescent wave.  In contrast, in 
the MIT experiment, the beam is already bunched when it 
reaches the grating, and the Andrews-Brau operating 
point is irrelevant.  Since the pulses are periodic in time, 
inter-bunch coherent S-P radiation occurs whenever the 
angle and order are such that the frequency is an integer 
multiple of the repetition frequency, namely 17.14 GHz.  

DETAILS OF THE SIMULATIONS 
The simulations are performed using the commercially 

available code MAGIC. It is a 2D/3D electromagnetic 
PIC code, i.e., a finite-difference, time-domain code for 
simulating plasma physics processes. Beginning from a 
specified initial state, the code simulates a physical 
process as it evolves in time. The full set of Maxwell's 
time-dependent equations is solved to obtain 
electromagnetic fields. Similarly, the complete Lorentz 
force equation is solved to obtain relativistic particle 
trajectories, and the continuity equation is solved to 
provide current and charge densities for Maxwell's 
equations.  Our version of the code is two-dimensional; it 
assumes that all fields and currents are independent of the 
z-co-ordinate.  However, the motion of electrons is 
calculated in three dimensions. 
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Figure 1: Simulation geometry. 

In Figure 1, we display the geometry we have chosen 
for our 2D Cartesian simulation, where the electron beam 
propagates in the x-direction. The set-up includes a 
perfectly conducting grating in the center at the bottom, a 
small cathode, which emits beam, and a vacuum box in 
which radiation propagates. The boundary consists of 
absorber, shown crosshatched, which prevents most of the 
radiation reaching the walls to reflect back into the box.  

We have verified that this feature of MAGIC greatly 
suppresses reflection. 
The choice of observable quantities is quite rich: electric 
and magnetic field components as a function of time, or 
as functions of space at fixed time. The electron phase 
space, currents and the Poynting vector may also be 
displayed. Our uniform density electron beam is thin in 
the y-direction and infinite in the z-direction.  For the 
Dartmouth simulation the beam leaves the cathode 
steadily, while for the MIT simulation a square-wave 
pulse of current of duration 1 ps is emitted at a frequency 
of 17.14 GHz.  The MIT grating is of the échelette type, 
while that of Dartmouth is laminar. We summarize the 
simulation parameters in Table 1.  

Table 1: Simulation Parameters 
Parameters Dartmouth MIT 
beam energy 50 keV 15 MeV 
Current (peak for MIT) 1000 A/m 25 kA/m 
Beam thickness δ = 20 μm 1 mm 
Beam-grating distance e = 20 μm 0.7 mm 
Grating period L = 173 μm 1 cm 
Max. wave number K = 363.2 cm- 2π cm-1

Grating groove depth H = 100 μm  
Grating groove width A = 62 μm  
Number of periods N = 35 10 
External magnetic Bx = 2 T 0 
Mesh size (10 μm)2 (100 μm)2

RESULTS OF THE DARTMOUTH 
SIMULATION 

In Figure 2 is shown the dispersion relation for the grating 
in the Dartmouth simulation, along with the light line and 
the beam line for 50 keV electrons.  The operating point P 
is shown, f = 473 GHz, k+/2π = 3824 m-1.together with the 
other solution of the same frequency P′ , with k-/2π = 
1956 m-1. At P, the group velocity is negative, which 
means that electromagnetic energy flows upstream, as in 
the Backward Wave Oscillator. 

 

Figure 2: Dispersion relation for Dartmouth Grating. 

In Figure 3 a contour map of the magnetic field 
components Bz and By in the x-y plane at time t = 0.9 ns is 
displayed.  
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Figure 3: Contour maps of Bz and By. 

In fact, these are composite maps, each of 2-mm width 
in y and joined together afterwards, to maintain color 
contrast. Although in the ideal case there is only a z-
component of the magnetic field, the small transverse 
motion of the electrons gives rise to very small x and y  
components as well.  While the contour map for Bz is 
complex, dominated mainly by the evanescent wave (of 
wavelength 0.635 mm, visible on the left), the map of By 
indicates radiation of half that wavelength emerging at a 
well-defined angle of approximately 55°.  Guided by this 
one can discern the same thing in the Bz map, although it 
is masked by the presence of the evanescent wave. This is 
the second harmonic of the evanescent wave, which is 
emitted coherently at 54°.  

 

Figure 4: Bz(t) at φ = 50°, and its FFT. 

In Figure 4  we show Bz(t) at angle 50°, along with 
Finite Fourier Transform (FFT) of the signal.  The time 
signal shows rapid growth after 0.5 ns. The frequency of 
the evanescent wave is indicated, and one sees that the 
second harmonic is the dominant frequency.  Tiny 
amounts of third and fourth harmonics are also visible.  
Note that the fourth harmonic in second order should be 
coherent at the same angle as the second harmonic in first 
order.  

In Figure 5 we show a snapshot of the beam just above 
the grating, along with its distribution in T-x phase space, 
where T denotes the kinetic energy. Strong bunching is 
apparent in both.  By counting oscillations we estimate 
approximately 0.25 mm for the wavelength, quite 
consistent with the value expected from the dispersion 
relation. We also note that the mean energy loss is 1-2 
keV or 2 to 4 % of the beam energy. 

 

Figure 5. Section of beam above grating (upper), and T-x 
phase-space distribution. 

To illustrate the presence of the evanescent wave 
corresponding to the point P′ in Figure 2, we show in 
Figure 6(a) , the quantity Bz vs. x at fixed time (0.9 ns) 
and at a y position just above the grating. The 
corresponding FFT is shown in Figure 6(b). 

 

Figure 6: (a) Bz(x), (b) FFT, (c) I(x), (d) FFT. 

For comparison, the quantity I(x) (I has dimension of 
Amp/linear meter) is displayed in Figure 6(c), with its 
FFT in Figure 6(d). It is clear that the behavior of these 
two quantities is quite different. The modulation of the 
current increases with increasing x, while that of the 
magnetic field does the opposite.  The visible period of 
the oscillations in Bz is about 0.5 mm, quite different from 
that of the current, but entirely consistent with k- in the 
Andrews and Brau dispersion relation. The FFTs confirm 
this picture, and illustrate the difference between the two.  
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For the magnetic field, Floquet theory implies 
( ) ( )xuexB ikx

z = , where u(x) is periodic of period L, and 
the wave number is given by the dispersion relation. The 
Fourier spectrum (with our convention) should show 
peaks at LNk /2/ +π , where N denotes an integer 
(1/L= 5780).  Since the dispersion relation provides two 
values for k, we get two series of peaks.  In contrast, the 
beam is only resonant with the greater k value, and the 
presence of multiples of this wavenumber is due to the 
non-linear nature of bunching.  

MIT SIMULATION 
In Figure 7 we show two contour plots of Bz in the x-y 

plane at fixed time, 1.7 ns.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Bz contour maps without and with grating. 

In the upper figure there is no grating, but rather a 10-
cm long flat plane, while the lower has an échelette 
grating.  The upper map is not S-P radiation. Indeed, in 
the limit of zero beam thickness and neglecting minor 
effects of the cathode and beam stop, we can write the 
quantity ( )tyxBz ,,  in closed form using standard 
electrodynamics. The lower map obviously bears an 
overall resemblance, but has a much richer spatial 
structure, since true S-P radiation occurs. In order to 
quantify the difference, we show in Figure 8 Bz(t) at 
φ = 48° for both cases, along with their FFTs.  

 

Figure 8: Bz(t) and FFT without and with grating. 

The distance from the grating center is 10 cm. At 48°, 
the lowest S-P frequency is 90 GHz; the second order is 
180. The sixth and twelfth harmonics, at 102 and 204 
GHz, would be S-P coherent at 45°.  This may account 
for their strong presence in the FFT. 

CONCLUSIONS 
We have presented results concerning simulations of 

coherent Smith-Purcell Radiation, using a 2-D PIC code.  
Both of the experiments we attempt to simulate use 
narrow round beams, and it is not prudent to claim that all 
of the phenomena we predict should be seen 
experimentally.  Given this caveat, we find that our 
Dartmouth set-up simulation lends support to the model 
of Brau and co-workers, while the simulation of the short-
pulse MIT experiment suggests that an interpretation only 
in terms of coherent S-P radiation may oversimplify the 
true situation. 
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