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Abstract

Nonlinear generation of coherent harmonic radiation is
an important option in the operation of a X-ray Free-
Electron Laser facility (XFEL) since it broadens the spec-
tral range of the facility itself, thus allowing for a wider
scope of experimental applications. We find that up-to-date
theoretical understanding of second harmonic generation is
not correct. Derivation of correct radiation characteristics
will follow our criticism. A more detailed report of our
study is given in [1].

INTRODUCTION

The process of harmonic generation of coherent radia-
tion can be considered as a purely electrodynamical one.
In fact, the harmonics of the electron beam density are
driven by the electromagnetic field at the fundamental fre-
quency, but the bunching contribution due to the interaction
of the electron beam with the radiation at higher harmon-
ics can be neglected. This leads to important simplifica-
tions. Namely, the solution to the self-consistent problem
for the fundamental harmonic can be used to calculate the
harmonic contents of the beam current. These contents en-
ter as known sources in the calculation of the characteristics
of harmonic radiation. As a result, numerical calculations
dealing with harmonic generation simply compute the solu-
tion of Maxwell equations with sources obtained by means
of FEL self-consistent codes.

Non-linear generation of the second harmonic radiation,
in particular, is important for extending the attainable fre-
quency range of an XFEL facility. The subject has been
a matter of theoretical studies in high-gain Self-Amplified
Spontaneous Emission (SASE) FELs both for odd [3] and
even harmonics [4, 5, 9], where the electrodynamical prob-
lem is dealt with. The practical interest of these studies
is well underlined by both numerical analysis [6] and ex-
periments in the infra-red and in the visible range of the
electromagnetic spectrum [7, 8]. Experimental results are
compared with numerical analysis and numerical analysis
rely on analytical studies: this fact stresses the importance
of a correct theoretical understanding of the subject. From
this viewpoint we find that [4] includes arbitrary manipu-
lations of the source terms in the paraxial wave equation,
which are also proposed in [5, 9].

We find that a first incorrect step is the omission of a term
depending on the gradient of the charge density. As we will
see such term is responsible for a non-negligible contribu-
tion to the second harmonic field both for the horizontal
and, surprisingly, for the vertical polarization component

and it should not go overlooked. Moreover, the beam dis-
tribution is modelled as a collection of individual point-
particles, i.e. a sum of δ-Dirac functions that is expanded
in the x coordinate on the right hand side of the wave equa-
tion. Based on this manipulation, as it is discussed in [1],
a main parameter is identified that has no theoretical sup-
port and will not play any role in our analysis. Also, (see,
again, [1] for a detailed demonstration) the expansion of the
δ-Dirac functions cannot be performed as it corresponds to
an incorrect expansion of the Green’s function for Maxwell
equation. Finally, the estimation of the second harmonic
power is based on the (arbitrarily manipulated) source term
alone, without actually solving Maxwell equations. Alto-
gether, these works predict a wrong dependence of the sec-
ond harmonic field on the problem parameters. The results
in [5] are extended in [9] to the case of an electron beam
moving off-axis through the undulator. The authors of [9]
conclude that the second harmonic power increases when
the beam moves off-axis. We find that, in this case the
power of the second harmonic radiation never increases: in
particular, as we will see, it may only decrease or remain
unvaried.

In this paper, that was inspired by a method [11] devel-
oped to deal with Synchrotron Radiation from complex se-
tups, we present a theory of second harmonic generation for
high-gain FELs. We apply a Green’s function technique to
solve the wave equation. Our result is used to calculate, in
a specific case, properties of the second harmonic radiation
such as polarization, directivity diagram and total power
including proper parametric dependencies. The most sur-
prising prediction of our theory is that the electric field is
not only horizontally polarized, as it is usually assumed,
but exhibits, though remaining linearly polarized, a verti-
cal polarization component too. A more detailed report of
our study is given in [1].

COMPLETE ANALYSIS OF THE SECOND
HARMONIC GENERATION MECHANISM

Let us consider for simplicity a beam modulated at a sin-
gle frequency ω. The current density can be written as a
sum of an unperturbed part independent of the modulation,
(�v/c)jo, and a term responsible for the beam modulation
at frequency ω, whose evolution through the beamline, ac-
counting for emittance and energy spread, is described by
the function ã2, to be considered a result from an external
FEL code:

�j(z, t, �η) =
�v(z, �η)

c
jo

(
�r⊥ − �r

(c)
⊥ (z, �η)

)
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×
{
1 +

[
ã2

(
z, �r⊥ − �r

(c)
⊥ (z, �η)

)
× exp

[
iω

∫ z

0

dz′

vz(z′, �η)
− iωt

]
+ C.C.

]}
. (1)

Eq. (1) has been derived in the limit γ2 � 1, where γ =
γ(z) describes the (given) average Lorentz factor along the
undulator. In the presence of energy spread the transverse
size of the electron beam is assumed to be not smaller than
the typical wiggling motion. Then, with accuracy δγ/γ all
particles can be considered moving coherently according to
�r
(c)
⊥ , which corresponds to a velocity:

vz(z, η) = vz(nd)(z)

(
1−

η2
x + η2

y

2

)
�v⊥(z, η) = �v⊥(nd)(z) + vz(nd)(z)�η . (2)

Here �η is the direction of the beam deflection with respect
to the undulator axis and �v(nd) is the velocity with no de-
flection. The charge density can be written as

ρ =
jz

vz
� jz

c
, (3)

as we will be working in the paraxial approximation. Eq.
(1) and Eq. (3) give the sources for Maxwell equation.

Looking for solutions in the form �E⊥ = �̃
E⊥ exp[iω(z/c−

t)] + C.C. and applying the paraxial approximation one
writes the Maxwell equation as [11]:

(
∇⊥2 +

2iω

c

∂

∂z

)
�̃
E⊥ =

4π

c
exp

[
iω

×
(∫ z

0

dz′

vz(z′, �η)
− z

c

) ] (
iω

c2
�v⊥ − �∇⊥

)
joã2 .

(4)

We will consider the case of a planar undulator thus mod-
elling the electron transverse motion with:

�r
(c)
⊥ (z′, �η) =

{
K [cos (kwz′)− 1]

γkw
+ ηxz′

}
�x + [ηyz′] �y .

(5)
K is the deflection parameter and kw = 2π/λw, λw is the
undulator period. We will work in the far zone. Using
a Green’s function technique and the integration variable
�l = �r′ − �r

(c)
⊥ (z′, �η) an exact solution of Eq. (4) reads:

�̃E⊥ =
iω

c2zo

∫
d�l

∫ Lw
2

−Lw
2

dz′jo(�l )ã2(z′,�l)exp [iΦT ]

×
[(

K

γ
sin (kwz′) + (θx − ηx)

)
�x + (θy − ηy) �y

]
, (6)

where

ΦT =
ω

ω1
kwz′ − ωK2

8γ2kwc
sin (2kwz′)

−ωK(θx − ηx)
γkwc

cos (kwz′) + ω

{
K

kwγc
(θx − ηx)

−1
c
(θxlx + θyly) + (θ2

x + θ2
y)

zo

2c

}
, (7)

ω1 being defined by

ω−1
1 =

1
2kwcγ2

[
1 +

K2

2
+ γ2

∣∣∣�θ − �η
∣∣∣2] . (8)

Here θx and θy indicate the observation angles and Lw =
Nwλw is the undulator length. Under the resonant approx-
imation we will make use of the well-known expansion
[12]: exp [ia sin (ψ)] =

∑∞
p=−∞ Jp(a) exp [ipψ] , Jp be-

ing the Bessel function of the first kind of order n. We will
be interested in frequencies ω around the second harmonic:

ω2o = 4kwcγ2
z , where γ2

z =
γ2

1 + K2/2
. (9)

The second harmonic contribution �̃E⊥2 is then

�̃E⊥2 =
iω2o

c2zo
exp

[
i
ω2o

2c
zo(θ2

x + θ2
y)

]
[A(θx − ηx)�x

+B(θy − ηy)�y]
∫ ∞

−∞
dlxdlydz′ρ̃(2)(z′,�l, C)

× exp
[
−i

ω2o

c
(θxlx + θyly)

]
× exp

{
i
ω2o

2c

[
(θx − ηx)2 + (θy − ηy)2

]
z′

}
. (10)

Here we have defined

A = 2ξ [J0 (ξ)− J2 (ξ)] + J1 (ξ) and B = J1 (ξ) , (11)

where ξ = K2/(2 + K2). Moreover

C = (ω − ω2o)/ω1o and (12)

ρ̃(2) = jo

(
�l
)

ã2

(
z′,�l

)
exp [iCz′] HLw(z′) . (13)

HLw(z′) is equal to unity over the interval [−Lw/2, Lw/2]
and zero everywhere else, and accounts for the fact that
the integral in dz′ should be performed over the undulator
length. Also, the detuning parameter C should be consid-
ered as a function of z, C = C(z) which can be retrieved
from the knowledge of γ = γ(z).

The terms in J1 in Eq. (11) are due to the presence of the
gradient term �∇⊥(joã2) in Eq. (4), which has been omitted
in [4, 5, 9]. The gradient term contributes for more than one
fourth of the total field for the x-polarization component.
Moreover, without that term, the entire contribution to the
field polarized in the y direction would go overlooked.

Usually, computer codes present the functions ã2 and
exp[iCz′] combined in a single product, known as the com-
plex amplitude of the electron beam modulation with re-
spect to the phase ψ = 2kwz′ + (ω/c)z′ − ωt. We will
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regard ρ̃(2) as a given function so that our description is in-
dependent on the particular presentation of the beam mod-
ulation.

We will now treat the particular case when γ(z) = γ̄ =
const, C(z) = 0,

ã2 = a2o exp
[
iω2o

c
(ηxlx + ηyly)

]
, (14)

with a2o = const and

jo

(
�l
)

=
Io

2πσ2
exp

(
−

l2x + l2y
2σ2

)
, (15)

Io and σ being the bunch current and transverse size respec-
tively. This corresponds to a modulation wavefront perpen-
dicular to the beam direction of motion. Eq. (10) amounts,
then, to a spatial Fourier transform and we obtain:

�̃E⊥2 =
iIoa2oω2oLw

c2zo
exp

[
i
ω2o

2c
zo(θ2

x + θ2
y)

]
× [A(θx − ηx)�x + B(θy − ηy)�y]

×sinc
{

Lwω2o

4c

[
(θx − ηx)2 + (θy − ηy)2

]}
× exp

{
−σ2ω2

2o

2c2

[
(θx − ηx)2 + (θy − ηy)2

]}
. (16)

The angular distribution of intensity along the �x and �y po-
larization directions will be denoted with I2(x,y). Defini-

tion of normalized quantities: θ̂ = (ω2oLw/c)1/2θ, η̂ =
(ω2oLw/c)1/2η, l̂x,y = [ω2o/(cLw)]1/2lx,y and of the
Fresnel number N = ω2oσ

2/(cLw) give

I2(x,y)

(
θ̂x − η̂x, θ̂y − η̂y

)
= const×

(
η̂x,y − θ̂x,y

)2

×sinc2

{
1
4

[(
θ̂x − η̂x

)2

+
(
θ̂y − η̂y

)2
]}

× exp
{
−N

[(
θ̂x − η̂x

)2

+
(
θ̂y − η̂y

)2
]}

. (17)

I2x and I2y have no azimuthal symmetry, contrarily with
what happens for the first harmonic, where only the x po-
larization is present and has azimuthal symmetry [13]. The
directivity diagram in Eq. (17) is plotted in Fig. 1 for dif-
ferent values of N as a function of θ̂x − η̂x at θ̂y − η̂y = 0
for the x polarization component. The next step is the cal-
culation of the second harmonic power for the x- and y-
polarization components that is given by

W2(x,y) =
c

2π

∫ ∞

−∞
dxo

∫ ∞

−∞
dyo|Ẽ⊥x,y(zo, xo, yo)|2 (18)

It is convenient to present the expressions for W2x and W2y

in a dimensionless form. After appropriate normalization
they both are function of one dimensionless parameter:

Ŵ2x = Ŵ2y = F2(N) = ln
(

1 +
1

4N2

)
. (19)

Figure 1: Plot of the directivity diagram for the radiation
intensity as a function of θ̂x − η̂x at θ̂y − η̂y = 0 for the
x-polarization component, for different values of N .

Here Ŵ2x = W2x/W
(2)
ox and Ŵ2y = W2y/W

(2)
oy are the

normalized powers. The normalization constants W
(2)
ox and

W
(2)
oy are given by

(
W

(2)
ox

W
(2)
oy

)
=

(
A2

B2

)
Wb

[
a2
2o

2π

] [
Io

γIA

]
, (20)

where Wb = mec
2γIo/e is the total power of the electron

beam and IA = mec
3/e � 17 kA is the Alfven current.

The logarithmic divergence in F2(N) in the limit for
N � 1 imposes a limit on the meaningful values of N .
On the one hand, the characteristic angle θ̂max associated
with the intensity distribution is given by θ̂2

max ∼ 1/N .
On the other hand, the expansion of the Bessel function
used in our derivation is valid only as θ̂2 ≤ Nw. As a
result we find that Eq. (19) is valid only up to values of
N such that N ≥ N−1

w . As N < N−1
w the dimension-

less problem parameter N is smaller than the accuracy of
the resonance approximation scaling as N−1

w . In this situ-
ation our electrodynamic description does not distinguish
anymore between a beam with finite transverse size and a
point-like particle and, for estimations, we should make the
substitution ln (N) −→ ln (N−1

w ).
The first harmonic study in [13] refers to a modulation

wavefront orthogonal to the direction of propagation of the
beam exactly as here and results have been presented in
dimensionless form, which allows direct comparison be-
tween the powers of the second and of the first harmonic:

W2(N)
W1(N)

=
1

(2π)3Nw

2 + K2

K2

a2
2o

a2
1o

A2 + B2

A2
JJ

F2(N)
F1(N)

,

(21)
where
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Figure 2: Solid line: F2/F1 as a function of N . Dashed
line: its asymptotic, π/(4N), for N � 1.

F1(N) =
2
π

[
arctan

(
1
N

)
+

N

2
ln

(
N2

N2 + 1

)]
(22)

and AJJ = J0(ξ/2)− J1(ξ/2). Here a1o is the analogous
of a2o for the first harmonic. For notational reasons, a1o is
one half of the original modulation level ain in Eq. (27) of
[13]. Moreover, all N in Eq. (22) are multiplied by a factor
1/2 with respect to [13], since N is defined for the second
harmonic. In Fig. 2 we plot the behavior of F2/F1 as a
function of N and its asymptotic, π/(4N), for N � 1.

The knowledge of the polarization contents of the radia-
tion, even if relatively small as in this case, can be impor-
tant from an experimental viewpoint. For example, in the
VUV range, the reflection coefficients of many materials
(e.g. SiC, that is widely used for mirrors) exhibit a com-
plicated behavior, and there may be differences of even an
order of magnitude depending on the polarization of the ra-
diation. A study of R(K) = W2y/W2x = A2(K)/B2(K)
shows that the relative magnitude of the y and the x polar-
ization components of the second harmonic power ranges
from 4% at K = 0 to about 6% in the limit K � 1. Note
that R(K) is independent of the particular model chosen
for the beam modulation and that the second harmonic ra-
diation is linearly polarized.

It is important to remark that we have treated a particular
situation when the modulation wavefront is orthogonal to
the direction of propagation of the beam. We have seen
that the total power of the second harmonic radiation does
not depend on the deflection angles ηx and ηy . In general,
the second harmonic power can be independent of the beam
deflection angle (like in this case) or can decrease due to the
presence of extra oscillating factors in �l in Eq. (10). On the
contrary in [9], an increase of the total power is reported,
due to deflection angles: we find that such conclusion does
not correspond to physical reality.

CONCLUSIONS

In this paper we addressed the mechanism of second har-
monic generation in Free-Electron Lasers. We find that
available theoretical treatments of this phenomenon con-
sist of estimations based on arbitrary manipulations of the
source term of the wave equation that describes the electro-
dynamical problem.

By solving analytically the wave equation with the help
of the Green’s function technique we derived an exact ex-
pression for the field of the second harmonic emission. We
limited ourselves to the steady-state case which is close
to practice in High-Gain Harmonic Generation (HGHG)
schemes but, for the rest, we did not make restrictive ap-
proximations. Our solution of the wave equation may
therefore be considered as a basis for the development of
numerical codes dealing with second harmonic emission
which should be using as input data the electron beam
bunching for the second harmonic, as calculated by self-
consistent FEL codes.

In general, the second harmonic field presents both hori-
zontal and vertical polarization components and the electric
field is linearly polarized. We calculated analytically the di-
rectivity diagram and the power associated with the second
harmonic radiation assuming a particular beam modulation
case. We expect that these expressions may be useful for
cross-checking of numerical results.

A more detailed report of our study is given in [1].
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