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Abstract

The Linac Coherent Light Source operates as a Self-
Amplified Spontaneous Emission Free-Electron Laser
(SASE FEL), where transverse coherence is achieved by
the domination of the FEL Eigenmode with the largest
growth rate. However complete transverse coherence is
not guaranteed because there are multiple eigenmodes with
similar growth rates for a low-diffracting FEL, such as the
LCLS. In addition the mode purity can be degraded by col-
lective electron beam motion.

In this paper the transverse coherence for the LCLS pulse
is investigated with respect to scattering on crystals. The
degradation in the contrast and size of the Bragg peaks is
analyzed for a step wise improved modeling of the exper-
iment (steady-state, time-dependent and start-end simula-
tions). The impact on diffraction experiments, including
the proposed experiment to measure the transverse coher-
ence, is discussed.

INTRODUCTION

Free-electron Lasers (FEL) allow for tunability of the
resonant wavelength [1] in contrast to quantum lasers
where the wavelength is defined by the energy difference
of the two electron states in the lasing medium. The con-
cept of FELs can also be extended to shorter wavelength
towards the X-regime by starting from the spontaneous ra-
diation as its own seed [2]. The gain per single pass is high
enough to reach saturation and thus to eliminate the restric-
tion of an enclosing optical cavity. Several of these Self-
amplified Spontaneous Radiation (SASE) FELs have been
successfully operated [3] with succeeding shorter wave-
lengths leading up to X-ray FELs such as LCLS [4] and the
European XFEL, currently under construction or prepara-
tion.

In a SASE FEL coherence is build up during the ampli-
fication process [5]. The phase information of the radiation
field and bunching is propagated in the longitudinal direc-
tion by the slippage of the radiation field and in the trans-
verse direction by diffraction and the betatron oscillation
of the electrons. However for X-ray FELs both methods
become less effective and the degree of coherence is lim-
ited. Therefore it is essential to measure longitudinal and
transverse coherence as basic properties of the FEL pulse.
For the longitudinal coherence, measurement methods nor-
mally analyze the fluctuation of the radiation power or they
take single-shot spectra with sufficient resolution. On the
other hand, transverse coherence determines the diffraction

pattern. Either slits or crystals are placed into beam and the
distribution of the diffracted radiation is measured by an
imaging system. From the reconstruction of the diffraction
pattern information on the degree of coherence is obtained.

In this paper we discuss the expected diffraction of the
LCLS beam on a crystal, in particular in the context of
the transverse and longitudinal coherence of the radiation
pulse. As the starting point for these simulations wave-
fronts have been extracted from steady-state and time-
dependent simulation of the LCLS X-ray FEL [6]. The fo-
cus is on a possible experimental set-up in the Near Experi-
mental Hall, which becomes accessible during the commis-
sioning and early operation of the FEL.

NUMERICAL MODELING

The diffraction of radiation by a crystal is complicated to
calculate unless some simplifying approximations are used
such as full longitudinal and transverse coherence. How-
ever this is not the case for the output of the LCLS radia-
tion beam and the diffraction pattern has to be calculated
based on first principles. For our discussion we are not in-
terested to derive the location of the Bragg peaks which are
well defined by the crystal properties and has no informa-
tion about the coherence of the incident field. Instead the
interest is in the width of each Bragg peak, determined by
the crystal size and/or the incident radiation. Therefore the
calculation of the distribution is restricted to an arbitrarily
chosen Bragg peak.

The diffraction process is broken down into the initial
scattering of the radiation field on each atom of the crystal
lattice. For the sake of simplicity we assume a cubic cell
as the basis of the lattice (e.g. Si with a cell size of 5.44 Å
in all dimensions). The emission of the scattered field de-
pends on the explicit structure of the cell and it is expressed
by the directivity function f(�r), where �r = �R − �rijk is
the direction vector from the cell position, indicated by the
indices i, j and k and the point of observation �R. Follow-
ing Huygen’s principle each cell emits a spherical wave,
weighted by the directivity function f , with an amplitude
proportional to the incident field Ai. The field observed is
then

A(�R, t) =
∑

i,j,k

Ai(�rijk, t)f(�R−�rijk)
eik|�R−�rijk|

|�R− �rijk|
eiωt (1)

We simplify the expression under following assumptions.
First, the point of observation �R lies far outside of the crys-
tal (R � rijk) and that the directivity function is smooth in
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�R. Second, the crystal is aligned to the coordinate system
with �rijk = d(ni�ex + nj�ey + nk�ez). Third the incident ra-
diation field propagates in the z-direction and the explicitly
delay in the emission from the deeper layers of the crystal
is expressed by iωt ≡ ikdnk. Eq. 1 then becomes

A(�R, t) = f(�R)
eikR

R

∑

i,j,k

Ai(�rijk, t)eiϕijk (2)

with the phase

ϕijk = kd[ni sin φ sin θ + nj cos φ sin θ + nk(1− cos θ)]
(3)

where φ and θ are the polar and azimuthal angle of the
direction of observation, respectively.

To calculate the interference between the spherical
waves from each cell the summation has to be done over
all sources which arrives at the point of observation at the
same time. Due to the finite size of the crystal this summa-
tion results in not only a single wavefront of the incident
beam contributing to the interference but an extended vol-
ume intersecting with the radiation pulse. Fig. 1 shows the
geometry of the radiation emitted under the diffraction an-
gle θ. Because the path length differs from each corner of
the crystal to the interference plane the incident field at B′,
scattered at B, is interfering with the field A′ from loca-
tion A of the crystal. The longitudinal separation between
A′ and B′ is b(1 − cos θ). Similarly, point D′ is ahead of
B′ by the distance a sin θ. Only in the forward direction
θ = 0 the interference arises from a single wavefront of
the incident radiation. However if the radiation is longitu-
dinally coherent the field values from the indicated volume
are identical to a single wavefront as well, which would
simplify the calculation of the interference pattern. This is
not the case for SASE FELs such as LCLS, which has a
longitudinal coherence length of about 300 nm at satura-
tion.
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Figure 1: Effective source size (orange area) of incident
radiation field to interfere when scattered at a crystal (blue
area)

Numerically it is highly inefficient to sum over all grid
points individually, because even a volume of 1 μm3 of a
Si crystal has about 6 · 109 cells. In addition the resolution
is mainly given by the discritization of the incident radia-
tion field, which is much coarser then the cell size of the
crystal. Therefore the incident radiation amplitude can be

kept constant over a sub-domain of the crystal. The effec-
tive source size has Nx, Ny and Nz sampled radiation field
point for each dimension, respectively. The sub-domain
has therefore the size of nx = a/dNx, ny = a/dNy and
nz = b/dNz . With an arbitrarily numbering of the cells
and the corresponding incident radiation field, the summa-
tion of Eq. 2 is reduced to

A(�R) = c(�R)
NxNyNz∑

j=1

Ai(�rj)eikxxj eikyyj ei(k−kz)zj(4)

× 1− einxkxd

1− eikxd
· 1− einykyd

1− eikyd
· 1− einz(k−kz)d

1− ei(k−kz)d

with the constant factor

c(�R) = f(�R)
eikR

R

and the vector �k of the wavenumber, pointing into the di-
rection of observation. The last three factors of Eq. 4 are
independent in the summation and can be calculated in ad-
vance. What remains is similar to a 3D Fourier transforma-
tion.

SIMULATION RESULTS

The main purpose of the simulation is to show the dif-
ference of the diffraction from a fully coherent source. For
that some assumption and approximation have been made,
which significantly reduce the computational time. The
forward Bragg peak has been selected, ignoring the exper-
imental challenge to separate the diffraction pattern from
the bulk of the incident radiation, which is not scattered by
the crystal. In addition it avoids the mixing of the trans-
verse and longitudinal field information of the radiation,
which would otherwise yield a time-consuming selection
of field information of the incident beam. We assume the
experimental station to be in the Near Experimental Hall
(NEH), 115 m downstream the undulator with an unfo-
cused FEL beam.

Fundamental Gauss-Hermite Modes

The numerical algorithm is tested with an analytical ex-
pression of the radiation field, using a fundamental Gauss-
Hermite mode [7]. The mode is fully defined by three pa-
rameters: the wavelength, the size of the waist and the posi-
tion of the waist. The radiation wavelength is kept constant
for all runs with a value of 1.5 Å, the resonant wavelength
of LCLS.

The first scan is over the waist size w0 with the waist
placed directly at the location of the crystal. The rms
diffraction angle depends inversely on the waist size, as
shown in the left plot of Fig. 2. This confirms that diffrac-
tion on a crystals acts like a spectrometer in the transverse
direction (Eq. 4). Therefore it is not surprising that the rms
size does not depend on the position z0 of the waist be-
fore the crystal (right plot of Fig. 2), because the diffrac-
tion pattern is proportional to the far field distribution of
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the Gaussian-Hermite mode which is per definition inde-
pendent of the waist position.

These results are not representing the diffraction from
the LCLS radiation beam, but they allow a good compar-
ison of the following results, based on LCLS simulation,
with an equivalent Gauss mode.
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Figure 2: Dependence of the rms size of the Bragg peak
on the waist size and position of an fundamental Gauss-
Hermite mode as incident radiation field.

Steady-State Simulation

Steady-state simulations include explicitly longitudinal
coherence by a periodic boundary condition of a single
slice of the radiation field. However they are restricted
to model only FEL amplifiers. To yield the same satura-
tion length as in the SASE case an effective seeding power
was chosen of about 5 kW. The point of saturation lies
around 100 m, while the simulation covers the entire un-
dulator length of 130 m. The simulated wavefront is then
propagated down the optical beam line by 115 m, using
Fresnel integration. The full width of the incident radia-
tion is about 500 μm at the location of the crystal, but the
distribution (see Fig. 3) is not as smooth as a fundamental
Gauss-Hermite mode.

The rms size of the Bragg peak is below 1 μ rad and cor-
respond to a waist size of w0 = 28 μm, when compared to
a Gauss-Hermite. As discussed above, the size of the inci-
dent radiation field at the crystal location has no importance
because it would forcefully exclude the impact of the phase
front curvature on the diffraction process. Instead, the waist
size of the FEL beam has to be used, except that the FEL
beam never goes through a waist. In the linear regime of the
FEL, where gain guiding preserves the profile of the radia-
tion, the wavefront has a residual curvature. At saturation,
gain guiding stops and the field diffracts according to free-
space propagation. Therefore the ‘virtual’ position of the
waist is always before the point of saturation. For FELs
in the Ångstrom region diffraction is negligible during the
FEL amplification and the curvature of the FEL eigenmode
is almost flat. This yields that the virtual waist position is
almost identical to the saturation point. The steady-state
simulation has a radiation size of less than 29 μm at satu-
ration and is therefore in good agreement with the estimate
of w0 = 28 μm of the equivalent Gauss-Hermite mode.

Figure 3: Incident and diffracted field distribution from a
steady-state simulation for LCLS.

Start-End Simulation

Start-end simulations model the entire experiment from
the creation of the electron beam with an rf photo-electron
gun, the propagation and compression of this beam trough
the beam line, the injection into the FEL and the transport
of the FEL radiation to the experimental station. For X-
ray FELs, the bunch is longer than the distance electrons
can communicate with each other during the FEL amplifi-
cation. When started by the initial fluctuation of the elec-
tron position in a SASE FEL, parts of the electrons bunch
amplifies the radiation independently. The longitudinal co-
herence is limited to submicron distances and the radiation
pulse consists of many spikes. The simulation covers each
spike with multiple wavefronts. The diffraction pattern is
calculated for each wavefront and the resulting intensity
distributions are added up.

Figure 4: Incident and diffracted field distribution from a
time-dependent simulation for LCLS, based on an start-end
simulation input deck for the electron beam.

The incident and scattered radiation field is shown in
Fig. 4. Compared to the steady-state simulation, the in-
cident field distribution looks smaller but actually has large
tails increasing the full size to 850 μm. The Bragg peak
is not smooth and has a structure similar to a speckle pat-
tern. The opening angle is 2.6 μrad. Because this num-
ber differs significantly to the steady-state result a compar-
ison with an equivalent fundamental Gauss-Hermite mode
looses its merits, as it yields an effective waist size of only
w0 = 9 μm. It would be wrong to identify this number
as the effective transverse size of coherence. The system-
atic error is that the SASE FEL pulse consists of higher
order modes. These modes would yield a larger opening
angle for the same waist size. Based on the same waist size
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the mode Hnm would have a larger opening angle by the
factor

√
1 + n + m. For the results obtained here, it gives

approximately n, m = 4.
The reason for the higher mode content lies in the elec-

tron beam, driving the SASE FEL. First, the electron beam
is only aligned to the undulator axis as a whole, while any
longitudinal slice of the electron distribution may have an
initial offset or angle at the undulator entrance. The col-
lective betatron oscillation of each slice sweeps the emis-
sion of radiation in the horizontal plane, which then slips
ahead in the bunch and interferes with radiation, emitted
under an different angle. Second, collective emission ef-
fects (coherent synchrotron radiation [8]) within the bunch
compression yield a change in the electron energy, depend-
ing on the position within the bunch. This energy change
is coupled to the transverse position or momentum of the
electron if the dispersion function is not zero at the undu-
lator entrance. This correlation causes the emission under
an angle and thus the excitation of higher modes. Fig. 5
shows the initial condition of the electron slice centroid at
undulator exit and the betatrons oscillation of three slices.
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Figure 5: Initial electron slice position at undulator en-
trance (left plot) and betatron oscillation along undulator
for three different slices (right plot, 20, 50 and 62 μm from
head for green, blue and red curve, respectively).

TRANSVERSE AND LONGITUDINAL
COHERENCE

The diffraction patterns depend significantly on the co-
herence of the LCLS pulse. In contrast to crystallography
experiments at third generation light sources, where the ra-
diation is selected through a pin hole and a narrow band
monochromator to guarantee full coherence, this is not the
case for the raw output of an SASE FEL.

The high intensity of the emitted radiation, which is
mainly generated by the spontaneous radiation, do not per-
mit to place optical elements in the beam line to focus the
beam down. Instead the FEL beam diffracts naturally till
it has a size of about 0.5 mm at the Near Experimental
Hall, which is located 115 m downstream the undulator. To
probe for full transverse coherence a mono-crystal has to
be match to that size. Alternatively slits have to be aligned
to each other with Ångstroem precision.

Experimentally it is very hard to extract the Bragg peak
in the forward direction, because it is covered by the inci-

dent beam, which is not deflected by the scattering on the
crystal. For the example of a Si crystal and a transverse
extension of about 1 mm, the opening angle of the forward
Bragg Peak is around 1 μrad, which is comparable to the
natural divergence of the FEL beam. Thus the Bragg peak
will always be lying within the cone of the FEL radiation.

Using off-axis Bragg peaks introduce a mixing of longi-
tudinal and transverse coherence. With a longitudinal co-
herence of about 350 nm and a transverse extend of 500
μm it requires only a deflection angle 0.7 mrad or more to
mix the phase information of two adjacent spikes. However
for Si the smallest deflection angle is three orders of mag-
nitude larger. Therefore it seems that crystals are general
unsuitable for measurement of the transverse coherence for
LCLS and that slits with a spacing of around 1 μm or be-
low are favorable. Alternatively the FEL beam can be fo-
cused down, but that would require that the measurement
is moved to the Far Experimental Hall.

CONCLUSION

With the improvement in the start-end modeling pro-
cess of the LCLS X-ray, the propagation of the FEL output
pulse towards the experimental station has been included
and used to simulate a generic experiment, where the radi-
ation is scattered at a Si crystal.

With respect to the ideal performance of LCLS the re-
sulting pulse acts similar to a fundamental Gauss-Hermite
mode with a matched to the mode size at the point of satura-
tion. However slight perturbations (e.g. centroid mismatch
or energy correlation with the transverse position and/or
momentum) alter the diffraction performance; Main reason
is that these perturbations couple to higher modes which
then increase the rms size of the diffraction pattern.

Another problem is the limited longitudinal coherence,
in particular when the transverse size is large. Therefore
crystals are less suitable than slit masks, because radiation
tends to scatter under a larger angle and thus enhances the
impact of the longitudinal coherence.
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