Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Williams, B.W.

Paper Title Page
TUPP041 Simulations of the Jefferson Lab FEL Using the New Electromagnetic Wiggler 313
 
  • J. Blau, O.E. Bowlin, W.B. Colson, R. Vigil, T. Voughs, B.W. Williams
    NPS, Monterey, California
 
 

Funding: JTO, ONR, NAVSEA

After successfully lasing at 10 kW of average power at a wavelength of 6 μm, a new electromagnetic wiggler has been installed at Jefferson Lab, which will be used to achieve high power at shorter wavelengths. Wavefront propagation simulations are used to predict system performance for weak-field gain and steady-state extraction, as the bunch charge, pulse length, electron beam radius, Rayleigh length, and mirror output coupling are varied.

 
   
THPP015 Vibration Effects in Short-Rayleigh Length FELs 480
 
  • P.P. Crooker, R.L. Armstead, J. Blau, O.E. Bowlin, W.B. Colson, R. Vigil, T. Voughs, B.W. Williams
    NPS, Monterey, California
 
 

Funding: JTO, ONR, NAVSEA

The short-Rayleigh length FEL configuration leaves the optical resonator near the cold-cavity stability limit. Studies show that the electron beam interaction stabilizes the optical modes and establishes limits to the vibrations of mirrors and the electron beam. Several types of vibrations are considered.