Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Schlott, V.

Paper Title Page
THPP072 Single-Shot Electron Bunch Length Measurements Using a Spatial Auto-Correlation Interferometer 648
 
  • D. Suetterlin, V. Schlott, H. Sigg
    PSI, Villigen
  • D. Erni, H. Jäckel
    ETH, Zurich
  • A. Murk
    University of Berne, Institute of Applied Physics, Berne
 
 

The polarization dependent intensity distribution of coherent transition radiation (CTR) emission has been studied theoretically and experimentally at an optical beam port downstream the 100 MeV SLS pre-injector LINAC. Based on these analyses, a spatial interferometer using the vertically polarized lobes of CTR has been designed and installed at this location. While a proof of principle of this bunch length monitor was achieved by step-scan measurements with a Golay cell detector, the single shot capability has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with the fairly long Nd:YAG laser pulses in a ZnTe crystal. In single-shot operation variations of the bunch length due to different settings of the LINACs bunching cavities have been observed.

 
   
THPP016 Low Emittance X-FEL Development 483
 
  • K.S.B. Li, A. Adelmann, A. Anghel, R.J. Bakker, M. Boge, A.E. Candel, M. Dehler, R. Ganter, C. Gough, G. Ingold, S.C. Leemann, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, V. Schlott, A. Streun, A. Wrulich
    PSI, Villigen
 
 

The Paul Scherrer Institute (PSI) in Switzerland currently develops a Low-Emittance electron-Gun (LEG) based on field-emitter technology [1]. The target is a normalized transverse emittance of 5 10(-8) m rad or less. Such a source is particularly interesting for FELs that target wavelengths below 0.3 nm since it permits a reduction of the required beam-energy and hence, a reduction of the construction- and operational costs of X-ray FELs. That is, for the case that this initial low emittance can be maintained throughout the accelerator. Here we present a concept for a 0.1 nm X-FEL based on LEG, which can be located close to the Swiss Light Source (SLS). Special attention goes to the maintenance of the emittance during the process of acceleration and bunch-compression, in particular in the regimes where either space-charge forces or coherent-synchrotron radiation are of importance.

[1] R. Ganter et al, Proceedings of the 2004 FEL Conference, Trieste, Italy, p. 602 (2004)