Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Penco, G.

Paper Title Page
THPP059 Frequency Modulation Effects in the Photoinjector for the FERMI @ Elettra FEL 616
 
  • M. Trovo, M.B. Danailov, G. Penco
    ELETTRA, Basovizza, Trieste
  • W. Graves
    MIT, Middleton, Massachusetts
  • S.M. Lidia
    LBNL, Berkeley, California
 
 

In the framework of the FERMI@ELETTRA project, aimed to build an X-ray FEL source, a crucial role is played by the electron source, which has to produce a very high quality bunch, in terms of low emittance and uncorrelated energy spread. We have investigated the effects of low- (100-300 5m) and high- ( 10-50 5m) frequency modulation of the beam charge deriving from intensity modulation of the laser pulse incident on the photocathode on the downstream beam distribution. Following other proposals, we have investigated the use of a short laser 'heater' to increase the effective incoherent energy spread and reduce the gain in the longitudinal density modulation instability. We present results from simulation of the beam generation at the photocathode, and transport through the photoinjector, initial acceleration modules and the laser heater.

 
   
THPP060 The RF Injector for the FERMI @ Elettra Seeded X-Ray FEL 620
 
  • G. Penco, M. Trovo
    ELETTRA, Basovizza, Trieste
  • S.M. Lidia
    LBNL, Berkeley, California
 
 

In the framework of the FERMI@ELETTRA project, aimed to build an x-ray FEL source based on laser-seeded harmonic generation, a crucial role is played by the electron source, which has to produce a very high quality beam, in terms of low emittance and uncorrelated energy spread. A very attractive solution is the SLAC/BNL/UCLA 1.6 cell s-band gun III based upon the demonstrated high performance of this design and its descendants. This paper describes the results of the optimization studies based on the gun III design and carried out with two space charge tracking codes (GPT and ASTRA) for nominal operating parameters. In particular two different bunch charge regimes has been explored: low (few hundreds of pC) and high (~1nC) . In the first case, the limited charge extracted from the photo-cathode allows to propagate a bunch with an initial higher density and to compress it along the linac down to a few hundreds of fs, attaining a high peak current bunch with a very low slice emittance. The second case has been investigated in order to verify the possibility to produce a "1 ps plateau" bunch with acceptable peak current and a slice emittance lower than 2 mm mrad. We present simulation results for both cases.

 
   
FROA003 FERMI @ Elettra: A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays 682
 
  • C.J. Bocchetta, D. Bulfone, P. Craievich, G. D'Auria, M.B. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, M. Ferianis, A. Gomezel, F. Iazzourene, E. Karantzoulis, G. Penco, M. Trovo
    ELETTRA, Basovizza, Trieste
  • J.N. Corlett, W.M. Fawley, S.M. Lidia, G. Penn, A. Ratti, J.W.  Staples, R.B. Wilcox, A. Zholents
    LBNL, Berkeley, California
  • M. Cornacchia, P. Emma, Z. Huang, J. Wu
    SLAC, Menlo Park, California
  • W. Graves, F.O. Ilday, F.X. Kaertner, D. Wang, T. Zwart
    MIT, Middleton, Massachusetts
  • F. Parmigiani
    Universita Cattolica-Brescia, Brescia
 
 

We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.