Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Ogasawara, H.

Paper Title Page
TUPP054 Ultrafast Coherent Control and Characterization of Surface Reactions using FELs 343
 
  • H. Ogasawara, D. Nordlund
    SLAC, Menlo Park, California
  • A. Nilsson
    New Affiliation Request Pending, Menlo Park, California
 
 

The microscopic understanding of surface chemistry requires a detailed understanding of the dynamics of elementary processes at surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the FEL can be used for generation of coherent synchrotron radiation in the low energy THz regime. With the current parameters for LCLS this corresponds to radiation with energy corresponding to excitations of low-energy vibrational modes of molecules on surfaces or phonons in substrates. The coherent radiation can coherently manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by coherent atomic motion along a specific reaction coordinate. Since the THz radiation is generated from the same source as the FEL radiation full-time synchronization for pump-probe experiments will be possible. The possibility to perform time-resolved X-ray Emission Spectroscopy (XES) and X-ray Photoelectron Spectroscopy (XPS) measurements as a probe of chemical dynamics is an exciting prospect. The combination of THz and soft x-ray spectroscopy could be a unique possibility for low repetition FEL facilities for ultrafast surface chemistry studies.