Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Lipka, D.

Paper Title Page
THPP033 Diagnostics Beamline for the SRF Gun Project 530
 
  • T.  Kamps, V. Duerr, K. Goldammer, D. Kraemer, P. Kuske, J. Kuszynski, D. Lipka, F. Marhauser, T. Quast, R. Richter
    BESSY GmbH, Berlin
  • P. Evtushenko
    Jefferson Lab, Newport News, Virginia
  • U. Lehnert, P. Michel, J. Teichert
    FZR, Dresden
  • I. Will
    MBI, Berlin
 
 

Funding: Funded by the Bundesministerium für Bildung und Forschung, the State of Berlin and the Zukunftsfonds Berlin

A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 and 50 ps, two schemes using Electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with an especially designed 180 degree spectrometer.

 
   
THPP034 Progress of the Rossendorf SRF Gun Project 534
 
  • J. Teichert, A. Arnold, H. Buettig, D. Janssen, U. Lehnert, P. Michel, K. Moeller, P. Murcek, Ch. Schneider, R. Schurig, F. Staufenbiel, R. Xiang
    FZR, Dresden
  • T.  Kamps, D. Lipka, F. Marhauser
    BESSY GmbH, Berlin
  • W.-D. Lehmann
    IfE, Dresden
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • I. Will
    MBI, Berlin
 
 

A superconducting rf photo electron injector (SRF gun) is under development at the Forschungszentrum Rossendorf. The project aims at several issues: improvement of the beam quality for the ELBE superconducting electron linac, demonstration of feasibility of this gun type, investigation of critical components, and parameter studies for future application (BESSY-FEL, 4GLS). In 2005, a substantial progress has been made. The two 3.5-cell niobium cavities for the gun have been delivered from the company ACCEL. The main parts for gun cryostat like vacuum vessel, cryogenic and magnetic shields are ready. Test benches for the cathode cooling system and the cavity tuner are being assembled. The photo cathode preparation lab has been arranged, and the diagnostic beam line has been designed (see T. Kamps et al., this conference). After delivering the gun cavities, their rf properties are being measured at room temperature and the warm tuning is being carried out. The set-up for this treatment and measurement as well as the results will be presented.

 
   
THPP040 Longitudinal Phase Space Studies at PITZ 552
 
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, H.-J. Grabosch, J.H. Han, S. Khodyachykh, M. Krasilnikov, S. Liu, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • M.V. Hartrott, D. Lipka
    BESSY GmbH, Berlin
 
 

Funding: This work has partly been supported by the European Community, contract numbers RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds' of the Helmholtz Association, contract number VH-FZ-005.

The main goal of the Photo Injector Test facility at DESY Zeuthen (PITZ) is to test and to optimize photo injectors for Free-Electron Lasers (FELs). The demands on such a photo injector are small transverse emittances, short bunches and a high bunch charge. A FEL is driven by an accelerator which consists of a rf gun followed by an acceleration section and a magnetic bunch compressor. For the effective bunch compression detailed studies of the longitudinal phase space have to be performed. The correlation between the positions of the particles in the bunch and their longitudinal momenta has to be understood and the non-linearities of the longitudinal phase space have to be analysed. A special apparatus for longitudinal phase space tomography at 5 MeV using a dipole, a Cherenkov radiator, an optical transmission line and a streak camera was developed. Results of longitudinal phase space measurements are presented and compared with simulations.

 
   
THPP043 Status and First Results from the Upgraded PITZ Facility 564
 
  • A. Oppelt, K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, U. Gensch, H.-J. Grabosch, J.H. Han, S. Khodyachykh, G. Klemz, M. Krasilnikov, S. Liu, V. Miltchev, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • W. Ackermann, W.F.O. Muller, S. Schnepp, T. Weiland
    TEMF, Darmstadt
  • D. Alesini, M. Boscolo, G. Di Pirro, M. Ferrario, D. Filippetto, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • V. Boccone
    Humboldt Universität zu Berlin, Berlin
  • L. Catani, E. Chiadroni, A. Cianchi
    INFN-Roma II, Roma
  • K. Floettmann, S. Schreiber
    DESY, Hamburg
  • T. Garvey
    LAL, Orsay
  • M.V. Hartrott, E. Jaeschke, D. Kraemer, D. Lipka, F. Marhauser, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • V.V. Paramonov
    RAS/INR, Moscow
  • N. Pavel
    Humboldt University Berlin, Institut für Physik, Berlin
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
  • I. Tsakov
    INRNE, Sofia
 
 

Funding: This work has been partly supported by the European Community, contract numbers RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds" of the Helmholtz Association, contract number VH-FZ-05.

Since December 2004, the photo injector test facility at DESY in Zeuthen (PITZ) has been upgraded. A normal conducting copper booster cavity has been installed and the diagnostics beamline has been strongly modified. An extended water cooling system has been installed and was successfully taken into operation. Actually, the new diagnostics elements are being commissioned. After the installation of the new 10 MW klystron in June/July, the gun can be conditioned towards higher average power, and the whole beamline including the booster will be taken into operation. First results from the commissioning phase including gun and booster conditioning are reported.