Lee, T.-Y.
Paper | Title | Page |
---|---|---|
MOPP046 | Beam Transport Line Design for Emittance Adjustment PLS X-FEL | 153 |
|
||
PLS W-FEL (1.2 GeV) and X-FEL (3.7 GeV) are designed to have large angle about 30 degree and 20 degree totally because of geometric restriction. This results in severe emittance growth. So PLS FEL BTL Design is focused to adjust emittance growth. This paper talks simulation results of emittance growth and another beam dynamic parameters. |
||
THPP021 | Issue of Energy Spread and Transverse Coherency of PAL-XFEL | 499 |
|
||
Funding: The Ministry of Science and Technology, Korea PAL-XFEL has been designed to generate 0.3-nm SASE radiation with 3.7-GeV electron beam and 4-mm gap in-vacuum undulator. The requirement of energy spread in undulator is tighter than LCLS and EU-FEL. Laser beam heating to reduce the micro-bunching instability inevitably induces an increase of energy spread during the bunching process in bunch compressor. Two factors are contradictory, which should be compromised. Transverse higher modes have comparatively large growth rates which results in poor transverse coherency. Growth rates of transverse modes are calculated with different beam conditions. |
||
THPP024 | Study of PAL-XFEL Wake Field Effects with the Genesis Code | 502 |
|
||
PAL-XFEL is the newly announced SASE FEL project that is going to achieve 0.3 nm wavelength radiation with 3.7 GeV electron beam. To overcome the relatively low energy of 3.7 GeV, short period and small gap in-vacuum undulator will be adopted. Wake field effects of this in-vacuum undulator on the SASE process is studied in this paper. |
||