Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Kuske, P.

Paper Title Page
THPP033 Diagnostics Beamline for the SRF Gun Project 530
 
  • T.  Kamps, V. Duerr, K. Goldammer, D. Kraemer, P. Kuske, J. Kuszynski, D. Lipka, F. Marhauser, T. Quast, R. Richter
    BESSY GmbH, Berlin
  • P. Evtushenko
    Jefferson Lab, Newport News, Virginia
  • U. Lehnert, P. Michel, J. Teichert
    FZR, Dresden
  • I. Will
    MBI, Berlin
 
 

Funding: Funded by the Bundesministerium für Bildung und Forschung, the State of Berlin and the Zukunftsfonds Berlin

A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 and 50 ps, two schemes using Electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with an especially designed 180 degree spectrometer.