Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Kraemer, D.

Paper Title Page
MOPP028 Comparative Design Studies for the BESSY FEL Program using the MEDUSA and GENESIS Simulation Codes 91
 
  • H. Freund
    SAIC, McLean
  • M. Abo-Bakr, K. Goldammer, D. Kraemer, B.C. Kuske, A. Meseck
    BESSY GmbH, Berlin
  • S. Biedron
    ANL, Argonne, Illinois
 
 

The BESSY FEL is based on a seeded cascade of High Gain Harmonic Generation (HGHG) sections followed by an amplifier to produce coherent and stable short wavelength output. Here, we report on comparative design studies carried out using the MEDUSA [1], and GENESIS [2] simulation codes. These two codes have each been used to successfully predict a variety of FEL designs and have agreed well with a number of important experiments. In addition, they were included in a comparative study of FEL simulation [3] that reported substantial agreement between the codes for the specific configurations studied. However, these codes are based on different assumptions. GENESIS treats the particle dynamics using a wiggler-averaged orbit approximation, the transverse electromagnetic field is treated using a field solver, and harmonics are not included. MEDUSA does not use the wiggler-averaged orbit approximation to treat particle dynamics, the transverse fields are treated using a Gaussian modal superposition, and harmonics are included self-consistently. Hence, the comparative study for an HGHG cascade is important. We report the results where the parameters of each stage have been optimized.

[1] H.P. Freund et al., IEEE JQE 36, 275 (2000). [2] S. Reiche, NIMA 429, 243 (1999). [3] S.G. Biedron et al., NIMA 445, 110 (2000).

 
   
THPP033 Diagnostics Beamline for the SRF Gun Project 530
 
  • T.  Kamps, V. Duerr, K. Goldammer, D. Kraemer, P. Kuske, J. Kuszynski, D. Lipka, F. Marhauser, T. Quast, R. Richter
    BESSY GmbH, Berlin
  • P. Evtushenko
    Jefferson Lab, Newport News, Virginia
  • U. Lehnert, P. Michel, J. Teichert
    FZR, Dresden
  • I. Will
    MBI, Berlin
 
 

Funding: Funded by the Bundesministerium für Bildung und Forschung, the State of Berlin and the Zukunftsfonds Berlin

A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 and 50 ps, two schemes using Electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with an especially designed 180 degree spectrometer.

 
   
THPP043 Status and First Results from the Upgraded PITZ Facility 564
 
  • A. Oppelt, K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, U. Gensch, H.-J. Grabosch, J.H. Han, S. Khodyachykh, G. Klemz, M. Krasilnikov, S. Liu, V. Miltchev, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • W. Ackermann, W.F.O. Muller, S. Schnepp, T. Weiland
    TEMF, Darmstadt
  • D. Alesini, M. Boscolo, G. Di Pirro, M. Ferrario, D. Filippetto, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • V. Boccone
    Humboldt Universität zu Berlin, Berlin
  • L. Catani, E. Chiadroni, A. Cianchi
    INFN-Roma II, Roma
  • K. Floettmann, S. Schreiber
    DESY, Hamburg
  • T. Garvey
    LAL, Orsay
  • M.V. Hartrott, E. Jaeschke, D. Kraemer, D. Lipka, F. Marhauser, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • V.V. Paramonov
    RAS/INR, Moscow
  • N. Pavel
    Humboldt University Berlin, Institut für Physik, Berlin
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
  • I. Tsakov
    INRNE, Sofia
 
 

Funding: This work has been partly supported by the European Community, contract numbers RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds" of the Helmholtz Association, contract number VH-FZ-05.

Since December 2004, the photo injector test facility at DESY in Zeuthen (PITZ) has been upgraded. A normal conducting copper booster cavity has been installed and the diagnostics beamline has been strongly modified. An extended water cooling system has been installed and was successfully taken into operation. Actually, the new diagnostics elements are being commissioned. After the installation of the new 10 MW klystron in June/July, the gun can be conditioned towards higher average power, and the whole beamline including the booster will be taken into operation. First results from the commissioning phase including gun and booster conditioning are reported.