Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Graves, W.

Paper Title Page
MOPP013 Optimization Studies of the FERMI at ELETTRA FEL Design 59
 
  • G. De Ninno
    ELETTRA, Basovizza, Trieste
  • W.M. Fawley
    LBNL, Berkeley, California
  • W. Graves
    MIT, Middleton, Massachusetts
 
 

The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence for the short pulse (50-200 fs) and long pulse (~1 ps) modes of operation are reported.

[1] S. Lidia et al. in these proceedings. [2] S. Di Mitri et al. in these proceedings.

 
   
TUPP009 Optimization Issues in a Harmonic Cascade FEL
 
  • G. De Ninno
    ELETTRA, Basovizza, Trieste
  • W.M. Fawley, G. Penn
    LBNL, Berkeley, California
  • W. Graves
    MIT, Middleton, Massachusetts
 
 

Funding: Work supported in part by the Office of Science, U.S. Dept. of Energy under Contract DE-AC03-76SF0098

Presently there is significant interest by multiple groups (e.g. BNL, ELETTRA, LBNL, BESSY, MIT) to reach short output wavelengths via a harmonic cascade FEL using an external seed laser. In a multistage device, there are a number of "free" parameters such as the nominal power of the input seed, the lengths of the individual modulator and radiator undulators, the strengths (i.e. the R56's) of the dispersive sections, the choice of the actual harmonic numbers to reach a given wavelength, etc., whose optimization is a non-trivial exercise. In particular, one can choose whether to operate predominantly in the "high gain" regime such as was proposed by Yu [1] in which case each radiator undulator is many gain lengths long or, alternatively, in the "low gain" regime in which case all undulators (except possibly the last radiator) are a couple gain lengths or less long and the output from each radiator essentially corresponds to coherent spontaneous emission from a pre-bunched beam. With particular emphasis upon the proposed two-stage FEL device for FERMI@Elettra, we discuss strategies for determining optimal cascade layouts based upon both analysis and numerical simulation results.

[1] L.H. Yu, Phys. Rev. A, 44, 5178 (1991).

 
   
THPP045 Advanced Electron Beam Diagnostics for the FERMI FEL
 
  • M. Ferianis, P. Craievich, G. D'Auria, S. Di Mitri
    ELETTRA, Basovizza, Trieste
  • P. Emma
    SLAC, Menlo Park, California
  • W. Graves
    MIT, Middleton, Massachusetts
  • M. Poggi
    INFN/LNL, Legnaro, Padova
  • A. Zholents
    LBNL, Berkeley, California
 
 

Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool for multiple beam measurement. Furthermore, by implementing the two bunch compressors in the vertical plane the effect of the Coherent Synchrotron Radiation (CSR) on the vertical emittance can be checked for.

 
   
THPP059 Frequency Modulation Effects in the Photoinjector for the FERMI @ Elettra FEL 616
 
  • M. Trovo, M.B. Danailov, G. Penco
    ELETTRA, Basovizza, Trieste
  • W. Graves
    MIT, Middleton, Massachusetts
  • S.M. Lidia
    LBNL, Berkeley, California
 
 

In the framework of the FERMI@ELETTRA project, aimed to build an X-ray FEL source, a crucial role is played by the electron source, which has to produce a very high quality bunch, in terms of low emittance and uncorrelated energy spread. We have investigated the effects of low- (100-300 5m) and high- ( 10-50 5m) frequency modulation of the beam charge deriving from intensity modulation of the laser pulse incident on the photocathode on the downstream beam distribution. Following other proposals, we have investigated the use of a short laser 'heater' to increase the effective incoherent energy spread and reduce the gain in the longitudinal density modulation instability. We present results from simulation of the beam generation at the photocathode, and transport through the photoinjector, initial acceleration modules and the laser heater.

 
   
THPP068 Electron Beam Diagnostic Based on a Short Seeded FEL
 
  • W. Graves, F.O. Ilday, F.X. Kaertner, T. Zwart
    MIT, Middleton, Massachusetts
  • M.B. Danailov, B. Diviacco, M. Ferianis, M. Marsi
    ELETTRA, Basovizza, Trieste
  • Z. Huang
    SLAC, Menlo Park, California
  • S.M. Lidia
    LBNL, Berkeley, California
 
 

The optical properties of an FEL amplifier are sensitively dependent on the electron beam current profile, energy spread, and transverse emittance. In this paper we consider using a short FEL amplifier operating on a low harmonic of a visible-IR input seed as a mildly destructive electron beam diagnostic able to measure these properties for sub-ps time slices. The optical methods are described as well as a planned implementation of the device for the FERMI@Elettra XUV FEL under construction at Sincrotrone Trieste, including its fiber-based seed laser closely coupled with the facility timing system, undulator parameters, and requirements on the electron and FEL pulses. This diagnostic is conveniently integrated with a "laser heater" designed to increase the very low electron beam energy spread produced by a photoinjector in order to avoid space charge and coherent synchrotron radiation instabilities.

 
   
FROA003 FERMI @ Elettra: A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays 682
 
  • C.J. Bocchetta, D. Bulfone, P. Craievich, G. D'Auria, M.B. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, M. Ferianis, A. Gomezel, F. Iazzourene, E. Karantzoulis, G. Penco, M. Trovo
    ELETTRA, Basovizza, Trieste
  • J.N. Corlett, W.M. Fawley, S.M. Lidia, G. Penn, A. Ratti, J.W.  Staples, R.B. Wilcox, A. Zholents
    LBNL, Berkeley, California
  • M. Cornacchia, P. Emma, Z. Huang, J. Wu
    SLAC, Menlo Park, California
  • W. Graves, F.O. Ilday, F.X. Kaertner, D. Wang, T. Zwart
    MIT, Middleton, Massachusetts
  • F. Parmigiani
    Universita Cattolica-Brescia, Brescia
 
 

We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.