Fawley, W.M.
Paper | Title | Page |
---|---|---|
MOPP013 | Optimization Studies of the FERMI at ELETTRA FEL Design | 59 |
|
||
The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence for the short pulse (50-200 fs) and long pulse (~1 ps) modes of operation are reported. [1] S. Lidia et al. in these proceedings. [2] S. Di Mitri et al. in these proceedings. |
||
TUPP009 | Optimization Issues in a Harmonic Cascade FEL | |
|
||
Funding: Work supported in part by the Office of Science, U.S. Dept. of Energy under Contract DE-AC03-76SF0098 Presently there is significant interest by multiple groups (e.g. BNL, ELETTRA, LBNL, BESSY, MIT) to reach short output wavelengths via a harmonic cascade FEL using an external seed laser. In a multistage device, there are a number of "free" parameters such as the nominal power of the input seed, the lengths of the individual modulator and radiator undulators, the strengths (i.e. the R56's) of the dispersive sections, the choice of the actual harmonic numbers to reach a given wavelength, etc., whose optimization is a non-trivial exercise. In particular, one can choose whether to operate predominantly in the "high gain" regime such as was proposed by Yu [1] in which case each radiator undulator is many gain lengths long or, alternatively, in the "low gain" regime in which case all undulators (except possibly the last radiator) are a couple gain lengths or less long and the output from each radiator essentially corresponds to coherent spontaneous emission from a pre-bunched beam. With particular emphasis upon the proposed two-stage FEL device for FERMI@Elettra, we discuss strategies for determining optimal cascade layouts based upon both analysis and numerical simulation results. [1] L.H. Yu, Phys. Rev. A, 44, 5178 (1991). |
||
THPP027 | LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields | 510 |
|
||
Funding: Work supported in part by the Office of Science,U.S. Dept. of Energy under Contracts DE-AC02-76F00515 and DE-AC03-76SF0098. Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with an undulator field taper. We compare these results to those predicted analytically [2]. [1] K.Bane and G. Stupakov, SLAC PUB-10707 (2004). [2] Z. Huang and G. Stupakov, Phys. Rev. ST Accel. Beams 8, 040702 (2005). |
||
FROA003 | FERMI @ Elettra: A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays | 682 |
|
||
We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized. |
||