Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Douglas, D.

Paper Title Page
MOOB004 Recent Results from the IR Upgrade FEL at Jefferson Lab
 
  • S.V. Benson, K. Beard, C.P. Behre, G.H. Biallas, J. Boyce, D. Douglas, H.F.D. Dylla, R. Evans, A.G. Grippo, J.G. Gubeli, D. Hardy, C. Hernandez-Garcia, K. Jordan, L. Merminga, G. Neil, J.P. Preble, M.D. Shinn, T. Siggins, R.L. Walker, G.P. Williams, S. Zhang
    Jefferson Lab, Newport News, Virginia
  • N. Nishimori
    JAEA/FEL, Ibaraki-ken
 
 

Funding: This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, the US Army Night Vision Laboratory, and by DOE Contract DE-AC05-84ER40150.

After demonstrating 10 kW operation with 1 second pulses, the Jefferson Lab program switched to demonstrating high power operation at short wavelengths using a new 8 cm period wiggler and a THz suppression chicane. We report here on the lasing results to date using this new configuration. We have demonstrated a large reduction in THz heating on the mirrors. We have also eliminated heating in the mirror steering assemblies, making operation at high power much more stable. Finally, we have greatly reduced astigmatism in the optical cavity, allowing operation with a very short Rayleigh range. The laser has been tuned from 0.9 to 3.1 microns using the new wiggler. User experiments commenced in April of 2005 with the FEL Upgrade operating over the 1-3 micron range. We are in the process of installing a 5.5 cm permanent magnet wiggler that will give us even larger tuning range and higher power.

Corresponding author: Tel: 1-757-269-5026; fax: 1-757-269-5519; E-mail address: felman@jlab.org

 
   
MOPP054 Electron Gun and Injector Designs for State-of-the-Art FELs
 
  • H. Bluem, A. Ambrosio, V. Christina, M.D. Cole, M. Falletta, D. Holmes, E. Peterson, J. Rathke, T. Schultheiss, A.M.M. Todd, R. Wong
    AES, Medford, NY
  • I. Ben-Zvi, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, H. Hahn, D. Kayran, J. Kewisch, V. Litvinenko, G.T. McIntyre, T. Nicoletti, J. Rank, T. Rao, J. Scaduto, K.-C. Wu, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • S.V. Benson, E. Daly, D. Douglas, H.F.D. Dylla, L. W. Funk, C. Hernandez-Garcia, J. Hogan, P. Kneisel, J. Mammosser, G. Neil, H.L. Phillips, J.P. Preble, R.A. Rimmer, C.H. Rode, T. Siggins, T. Whitlach, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL, Oak Ridge, Tennessee
  • P. Colestock, J.P. Kelley, S.S. Kurennoy, D.C. Nguyen, W. Reass, D. Rees, S.J. Russell, D.L. Schrage, R.L. Wood
    LANL, Los Alamos, New Mexico
  • D. Janssen
    FZR, Dresden
  • J.W. Lewellen
    ANL, Argonne, Illinois
  • J.S. Sekutowicz
    DESY, Hamburg
  • L.M. Young
    TechSource, Santa Fe, New Mexico
 
 

Funding: This work is supported by the Naval Sea Systems Command, the Office of Naval Research, the DoD Joint Technology Office, the Missile Defense Agency and the US Department of Energy.

Reliable, high-brightness, high-power injector operation is a critical technology issue for energy recovery linac drivers of high-power free electron lasers (FEL). Advanced Energy Systems is involved in three ongoing injector programs that target up to 0.5 Ampere current levels at emittance values consistent with the requirements of the FEL. One is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. A 748.5 MHz injector of this type is being assembled and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility (JLAB) beginning in 2007. The second approach being explored is a high-current normal-conducting RF photoinjector. A 700 MHz gun, presently under fabrication, will undergo thermal test in 2006 at Los Alamos National Laboratory (LANL). Finally, a half-cell 703.75 MHz SRF gun is presently being designed and will be tested to 0.5 Ampere at Brookhaven National Laboratory (BNL) in 2007. The status and projected performance for each of these injector projects is presented.

 
   
TUPP058 Calculations and Mitigation of THz Mirror Heating at the Jefferson Lab FEL
 
  • G.P. Williams, S.V. Benson, G.H. Biallas, D. Douglas, J.G. Gubeli, G. Neil, M.D. Shinn, S. Zhang
    Jefferson Lab, Newport News, Virginia
  • O.V. Chubar, P. D. Dumas
    SOLEIL, Gif-sur-Yvette
 
 

Funding: This work supported by the US Army Night Vision Lab, ONR, JTO, the Commonwealth of Virginia, the Air Force Research Laboratory, and DOE Contract DE-AC05-84ER40150. We thank Fred Dylla for his expert advice and encouragement.

Short bunches of electrons in the Jefferson Lab FEL emit multiparticle coherent edge radiation as they enter the dipole prior to the outcoupler mirror. This light is more collimated than synchrotron light and furthermore is modified by interference from the last chicane magnet after the high reflector. This light provides an additional heat load on the outcoupler in a wavelength range it was not designed to handle. We have performed calculations of this effect using a new extension of the Synchrotron Radiation Workshop code which, importantly, takes into account both acceleration and velocity (or Coulomb) terms of the emitted electric field. We have also measured THz properties of some of the mirrors. We show how the addition of a decompression chicane mitigates these problems.

 
   
THPP070 Temporal Characterization of Electron Beam Bunches with a Fast Streak Camera at the JLab FEL Facility 640
 
  • S. Zhang, S.V. Benson, D. Douglas, D. Hardy, C. Hernandez-Garcia, K. Jordan, G. Neil, M.D. Shinn
    Jefferson Lab, Newport News, Virginia
 
 

Funding: This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Army Night Vision Laboratory, the Air Force Research Laboratory, and by DOE Contract DE-AC05-84ER40150.

The design and construction of an optical transport that brings synchrotron radiation from electron bunches to a fast streak camera in a remote area has become a useful tool for online observation of bunch length and stability. This paper will report on the temporal measurements we have done, comparison with simulations, and the on-going work for another imaging optical transport system that will make possible the direct measurement of the longitudinal phase space by measuring the bunch length as a function of energy.