Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Biedron, S.

Paper Title Page
MOPP028 Comparative Design Studies for the BESSY FEL Program using the MEDUSA and GENESIS Simulation Codes 91
 
  • H. Freund
    SAIC, McLean
  • M. Abo-Bakr, K. Goldammer, D. Kraemer, B.C. Kuske, A. Meseck
    BESSY GmbH, Berlin
  • S. Biedron
    ANL, Argonne, Illinois
 
 

The BESSY FEL is based on a seeded cascade of High Gain Harmonic Generation (HGHG) sections followed by an amplifier to produce coherent and stable short wavelength output. Here, we report on comparative design studies carried out using the MEDUSA [1], and GENESIS [2] simulation codes. These two codes have each been used to successfully predict a variety of FEL designs and have agreed well with a number of important experiments. In addition, they were included in a comparative study of FEL simulation [3] that reported substantial agreement between the codes for the specific configurations studied. However, these codes are based on different assumptions. GENESIS treats the particle dynamics using a wiggler-averaged orbit approximation, the transverse electromagnetic field is treated using a field solver, and harmonics are not included. MEDUSA does not use the wiggler-averaged orbit approximation to treat particle dynamics, the transverse fields are treated using a Gaussian modal superposition, and harmonics are included self-consistently. Hence, the comparative study for an HGHG cascade is important. We report the results where the parameters of each stage have been optimized.

[1] H.P. Freund et al., IEEE JQE 36, 275 (2000). [2] S. Reiche, NIMA 429, 243 (1999). [3] S.G. Biedron et al., NIMA 445, 110 (2000).

 
   
TUPP013 Spectral Properties of Planar Bi-Harmonic Undulators and Their Use for FEL Operation
 
  • F. Ciocci, G. Dattoli, L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
  • S. Biedron, S.V. Milton
    ANL, Argonne, Illinois
  • H. Freund
    SAIC, McLean
 
 

We study the spectral details of planar bi-harmonic undulators and show that they have quite interesting properties. They can indeed be exploited to enhance or suppress harmonics and can be exploited in high gain segmented FEL devices to make more efficient the mechanisms of harmonic generation. We also show that the formalism we develop can be extended to the multi-component case and can usefully be exploited to study undulator magnetization errors.

 
   
THPP057 High-Average, High-Peak Current Injector Design
 
  • S. Biedron, J.W. Lewellen, M. Virgo
    ANL, Argonne, Illinois
 
 

Funding: Air Force Research Laboratory, HEL-JTO Program Office

There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.