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Abstract 
Undulator filed errors influence the electron beam 

trajectories and lower the radiation quality. Angular 
deflection of electron beam is determined by first field 
integral, orbital displacement of electron beam is 
determined by second field integral and radiation quality 
can be evaluated by rms field error or phase error. 
Appropriate ordering of magnets can greatly reduce the 
errors. We apply a modified simulated annealing 
algorithm to this multi-objective optimization problem, 
taking first field integral, second field integral and rms 
field error as objective functions. Undulator with small 
field errors can be designed by this method within a 
reasonable calculation time even for the case of hundreds 
of magnets (first field integral reduced to 10-6T·m, second 
integral to 10-6T·m2 and rms field error to 0.01%). Thus, 
the field correction after assembling of undulator will be 
greatly simplified. This paper gives the optimizing 
process in detail and puts forward a new method to 
quickly calculate the rms field error and field integrals. 

INTRODUCTION 
Undulators and wigglers are the main components of 

third-generation synchrotron radiation sources and free-
electron lasers [1]. Undulators are mostly built of 
permanent magnets with iron poles (hybrid undulators) or 
without iron poles (Pure Permanent-Magnet undulators or 
PPM undulators). The unavoidable remanence 
inhomogeneities of these magnets and construction errors 
cause the undulator magnetic field errors [2], which affect 
the trajectories of the electron beam and lower the 
radiation quality of undulator or FEL [3]. Angular 
deflection of electron beam is determined by first field 
integral along the beam axis, orbital displacement of 
electron beam is determined by second field integral 
along the beam axis, and radiation quality can be 
evaluated by rms field error or phase error [4]. To reduce 
the undulator magnetic field errors, we need a sufficiently 
precise mechanical construction and a certain method to 
overcome the influence of remanence inhomogeneities. 
That is, we should not only provide a precise method to 
measure the individual permanent magnets and assemble 
them to form undulator [5], but also provide an 
appropriate ordering of undulator magnets before 
assembly. And the sorting procedure of ordering is mainly 
based on �Simulated Annealing� [6] although �genetic 
algorithms� have also been used [7] and it is widely 

applied to the PPM undulator where linear superposition 
can be used.  

We apply a modified simulated annealing algorithm to 
this multi-objective optimization problem, taking first 
field integral, second field integral and rms field error as 
objective functions. And we put forward a new quick 
method to directly calculate the rms field error and field 
integrals according to remanence and positions of 
individual magnets. Illustrations are drawn from the 
reconstruction of the first undulator (modulator of optical 
klystron) of CHG-FEL for National Synchrotron 
Radiation Laboratory.  

OBJECTIVE FUNCTIONS 
Figure 1 shows the structure of undulator. The 

undulator consists of three configuration magnets, which 
are horizontal (�H�) magnets with the main remanence in 
the horizontal direction, vertical (�V�) and terminal (�T�) 
magnets with the main remanence in the vertical direction. 
�T� magnets differ from �V� magnets only in width and 
their width is half those of �V� magnets. X, Y, Z are 
length, height, width of the magnet. And g is the gap of 
undulator magnetic field. 

 
Figure 1: Structure of undulator. 

For purposes of discussion, we assume a rectangular 
coordinate system with the electron propagation axis in 
the z direction, the principal component of the magnetic 
field By in the vertical y direction, and the x-z plane being 
thus the plane of the electron sinusoidal motion. 

Measurement and Calculation of Magnets 
To measure all the magnets equivalently, we define a 

reference position with the main component in the 
upward vertical y direction. Therefore, for a magnet, the 
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Figure 2: Distribution of magnetic field By, 1st integral and 2nd 
integral of individual magnet (remanence Br=1T). 

remanence components Br1, Br2, Br3 are in the x, y, z 
direction respectively. For ideal magnets, Br1=Br3=0. For 
real magnets, in general, |Br1|:|Br2|:|Br3| approximately 
equals 1:1000:10.  

Figure 2 shows the distribution of magnetic field By (a), 
first integral (b) and second integral (c) of individual 
magnets (remanence Br=1T). After measurement of individual magnets, we can 

obtain the values of Br1,n, Br2,n, Br3,n, and here n is the 
serial number of magnets from 1 to Ntotal (the total number 
of all the magnets). We choose N magnets among the Ntotal 
according to Br2,n and arrange them to assemble the 
undulator.  

To get the first integral of individual magnet I1, we 
integrate By along the z-axis from �∆z to ∆z, where ∆z is 
the distance between the centre of the magnet and the 
measured position. Integrating By twice, we can get the 
second integral I2. For magnets with unit remanence (1T), 
�V� magnets: I1= K1, I2= K1∆z; �T� magnets: I1= K1/2 and 
I2= K1∆z/2; �H� magnets: I1= 0 and I2= K2. When ∆z is 
big enough, K1 and K2 are constants, decided by X, Y, Z, x, 
y. In our illustration, X=100mm, Y=23mm, Z=23mm, x=0, 
y=Y/2+g/2, ∆z=600mm, K1=2.4143mm, K2=170.78mm2, 
Bv0=0.0904T, Bv1=0.0246T, Bv2=-0.0034T, Bv3=-0.0043T; 
BH0=0T, BH1=0.0505T, BH2=0.0106T, BH3=-0.0012T.   

If the magnet is used in the �V� or �T� configuration, 
Br1 corresponds to Brx, Br2 to Bry and Br3 to Brz. If the 
magnet is placed in the �H� position, Br1 corresponds to 
Brx, Br2 to Brz and Br3 to Bry.  

Take the centre of the magnet as the origin of the 
coordinate, and the magnetic field in y direction By(x,y,z), 
generated by this system outside the magnet, is given by 
the following expression:  
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If it is �T� magnet (n=1, 2, N-1 and N),  
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    (6) By of individual magnets can be calculated using 

Equations (1), (2) and (3). For calculating rms field error 
of undulator, we should record the values in the positions 
whose distances from the centre of the magnet are integer 
times of Z. �V� magnets are recorded as BV0, BV1, BV2, 
BV3�. And for �H� magnets, they are BH0, BH1, BH2, 
BH3....  

For undulator, the first field integral I1 and second field 
integral I2 are given as: 
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Rms Field Error Calculation of Undulator 
The peak values of magnetic field appear at the centre 

of �V� magnets. So the total number of peak values in the 
undulator is INT(N/4)-1. The peak value is given as: 
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Here, i=1,2,�, INT(N/4)-1, is the serial number. 
For undulator, the rms field error is given as: 
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MULTI-OPTIMIZATION MODIFIED SA  
Simulated annealing (SA) is a technique used to find 

good approximate solutions for combination optimization 
problem. We apply a multi-optimization modified SA 
algorithm (with heating procedure and the best move 
strategy based on standard SA) to optimize the problem of 
PPM undulator magnets ordering [8]-[9].  

The multi-objective functions are (s is a solution):  
f1(s): the rms field error of undulator; 
f2(s): the absolute value of first field integral; 
f3(s): the absolute value of second field integral. 

Preliminaries 
A weighting function S(s) is chosen: 
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Here, w1, w2 and w3 are weighting factors, and 
w1+w2+w3=1. 
Parameters of the heating procedure are initialized as: 
h (the heating factor) and Hstep ( the heating length). 
Parameters of the cooling procedure are initialized as: 
T0 (initial temperature, calculated in modified SA, 
but given in standard SA), α (the cooling factor <1) 
and Nstep (the cooling length of temperature step). 
Two stopping criteria are fixed: Tstop (the final 
temperature) and Nstop (the maximum number of 
iterations without improvement). 
A neighborhood N(s) of feasible solution in the 
vicinity of s is defined.  

Procedures 
Initialization. Initialize w1, w2, w3, h, Hstep, α, Nstep, 
Tstop and Nstop, set m=n=Hcount=Ncount=0; Draw at 
random an initial solution s0, and evaluate f1(s0), 
f2(s0), f3(s0) and S(s0); Set a list of potentially 
efficient solutions PE. 
Heating procedure. Draw at random a solution s��
N(sn), and evaluate f1(s�), f2(s�) and f3(s�) and S(s�); If 
S(s�)>S(sn), we accept the new solution: s�→sn+1, 
Hcount= Hcount+1, else, sn→sn+1. Update the list PE 
with the solution s�, and set n=n+1. If n=Hstep, then 
break and set T0=h×Hcount, else, iterate. 
Cooling procedure. Randomly draw K solutions from 
the N(sn), and evaluate f1, f2, f3 and S of them. Let the 
best solution among the generated K solutions be s�; 
Replace sn by s� with probability: 
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If s� is accepted s�→sn+k, Ncount=0, else, sn→sn+k, 
Ncount= Ncount+K. Update the list PE with the solution 
s�; Set n=n+K. m=m+K. If m/Nstep is an integer, then 

Tm=αTm-k, else Tm= Tm-k; If Tm< Tstop or Ncount=Nstop, 
then stop, else, iterate.  

OPTIMIZATION RESULTS 
We use the following parameters: w1=0.6, w2=0.2, 

w3=0.2, h=1.0, Hstep=100, α=0.9, Nstep=200, Tstop=0.0001, 
Nstop=500, K=10.  

We initialize 10 orderings of magnets, and optimize 
each ordering by five methods, including modified SA, 
modified SA only with heating procedure (K=1), standard 
SA, Local Search (T→0) and Exhaustion approach. It 
takes approximately 100 seconds for each process (CUP 
2.0G). 

Table 1 shows the optimization results of modified SA 
and some other methods after 10 calculations of each. We 
can see that the ordering of magnets provided by SA can 
reduce the undulator field errors much more greatly 
compared with the results of other methods listed in the 
table. And modified SA is better than other SA 
Algorithms with smaller mean value and rms divergence.  

Table 1: Optimization results of Modified SA and other methods 

Algorithm Rms field 
error (10-4) 

1st integral 
(10-6T·m) 

2nd integral 
(10-6T·m2) 

Initial solution 58.6±9.7 295±239 312±251 

Modified SA 1.71±1.12 1.18±1.91 0.71±0.87 
Modified SA (only 
with heating procedure) 1.82±1.14 1.55±1.40 3.22±4.67 

Standard SA  2.13±1.28 1.13±1.59 0.42±0.47 

Local Search  3.15±1.87 3.89±7.09 0.64±1.54 

Exhaustion approach 31.9±3.8 26.1±23.5 17.4±17.9 

 
In order to demonstrate the precision of the quick 

method in calculation of undulator field errors, we design 
a very precise three-dimensional program in which we 
first calculate undulator field according to remanence and 
positions of individual magnets, and then analyze the 
undulator. From Table 2, we can see the two results are 
very close (can be ignored considering the construction 
errors), but actually the time used by our quick method is 
over 1000 times less than the latter.   

 
Table 2: Calculation results of objective functions by quick method 

and three-dimensional program (in parentheses) 

 Before 
optimization 

After 
optimization 

Rms field error σB/B  0.653%(0.634%) 0.103�(0.099�) 

1st integral (10-6T·m) -463.4  (-464.9) -1.33    (-2.01) 

2nd integral (10-6T·m2) -566.5  (-568.3) -0.79    (0.23) 

Rms phase error σφ /       (13.11) /       (0.78) 

Figure 3 shows the trajectory of electron beam before 
and after optimization. Angular deflection ∆x�and orbital 
displacement ∆x of electron beam are given as: 

1 2300 300
'

[ ] [ ]
= =

I I
x x

E MeV E MeV
∆ ∆         (12) 
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Figure 3: Electron trajectory before and after optimization 

Figure 4 shows the spectrum of spontaneous emission 
before and after optimization. 

Figure 4: Spontaneous emission spectrum before and optimization 

CONCLUSION 
The optimization results exposed in this paper show 

that the undulator field errors can be greatly reduced (rms 
field error reduced to 0.01%, first field integral to 10-

6T·m, second integral to 10-6T·m2 and rms phase error to 1 
degree). The field after assembly will inevitably differ 
from predictions from the optimization results due to the 
construction errors, and because of this reason, we don�t 
consider the multipole field errors and set the weighting 
factors 0.6 for rms field error, 0.2 for first integral, 0.2 for 
second integral [5].   

Once the magnets have been constructed and measured, 
the remaining errors can be overcome by swapping 
magnets, or more commonly by �shimming� [10]. 

Optimization of the magnets ordering can also save the 
time for field measurement and correction after 
assembling. 

REFERENCES 
[1] P.G. O'Shea, H.P. Freund. Free-electron lasers: status 

and applications. Science. 292 (2001) 1853. 
[2] B.M. Kincaid. Analysis of field error in existing 

undulators. Nucl Instr and Meth. A 291 (1990) 363. 
[3] E. Esarey, C.M. Tang, W.P. Marable. The effects of 

field errors on low-gain free-electron lasers. IEEE 
Journal of Quantum Electronics, 27 (1991) 2682. 

[4] B.L. Bobbs, G Rakowsky, P. Kennedy, et al. In search 
of a meaningful field-error specification for wigglers. 
Nucl Instr and Meth. A 296 (1990) 574.  

[5] R.A. Cover, G Rakowsky, B.L. Bobbs, et al. 
Undulator design for synchrotron radiation source 
using simulated annealing. IEEE Journal of Quantum 
Electronics. 31 (1995) 664. 

[6] M.E. Couprie, C. Bazin, M. Billaron. Oprimization of 
the permanent magnet optical klystron for the super-
ACO storage ring free electron laser. Nucl Instr and 
Meth. A 278 (1989) 788. 

[7] R Hajima, F Matsuura. Advanced optimization of 
permanent magnet wigglers using genetic algorithm. 
Nucl Instr and Meth. A 375 (1996) 19. 

[8] H Ishibuchi, S Misaki, H Tanaka. Simulated annealing 
with modified generation mechanism for flow shop 
scheduling problems. European Journal of Operational 
Research. 81 (1995) 388.  

[9] J. Teghem, D. Tuyttens, E.L. Ulungu. An interactive 
heuristic method for multi-objective combinatorial 
optimization. Computers & Operations Research. 27 
(2000) 621.  

[10]J Chavanne, P Elleaume. Undulator and wiggler 
shimming. Synchrotron Radiation News. 8 (1995) 18.

 

Chen Nian. Chen et al. / Proceedings of the 2004 FEL Conference, 490-493 493

FEL Technology


