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Abstract

An FEL simulation code called SIMPLEX is introduced,
which has been developed to investigate the effects of the
undulator field error on the FEL gain. It can perform FEL
simulations with the magnetic field distribution actually
measured along the undulator axis so as to check the per-
formance of the undulator as an FEL driver. Basic equa-
tions are derived that enable the numerical implementation
of the FEL equations with the error fields taken into ac-
count. Practical examples for investigation of the undulator
field error are also presented.

INTRODUCTION

The undulator is one of the most important components
of an FEL. In particular, a quite large number of periods is
required to achieve saturation in SASE-based x-ray FELs.
Because the permanent magnets in the undulator are not
perfect, the undulator field has necessarily error compo-
nents. Needless to say, the tolerance on the undulator field
error is more severe for larger number of periods. It is thus
important to check the performances after construction of
an undulator by measuring the magnetic field and calculat-
ing optical properties with it.

As a spontaneous-emission synchrotron radiation (SR)
source, the performances of an undulator are in general
specified by a quantity called the phase error. It is also
possible to compute the intensity of SR by Fourier trans-
forming the electric field generated by an electron moving
in the undulator field. On the other hand, it is not easy to
check the performances of the undulator as an FEL driver.
The most promising way is to perform simulations of the
FEL processes driven by the undulator with error fields.
We have recently developed an FEL simulation code called
SIMPLEX that can perform FEL simulations with the mag-
netic field distribution actually measured along the undula-
tor axis. The details of which are described in the following
sections.

FEL EQUATIONS

The amplification process in the FEL is represented by
three equations, i.e., the wave, energy and phase equations.

The wave equation of the radiation field under the parax-
ial approximation is written as

eiω(z/c−t)

[
∇2 + 2i

ω

c

(
∂

∂z
+

1
c

∂

∂t

)]
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where Ẽ is the complex amplitude of the radiation field, jx

is the horizontal component of the beam current density, µ0

the permeability of vacuum. Averaging over the period of
radiation, T = 2π/ω, and integrating by part, we have
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where λu = 2π/ku is the periodic length of the undulator,
N is the number of electrons existing in the averaging area,
and βj , rj , and ψj are the velocity, position and phase of
the j-th electron, respectively. The phase equation can be
modified as

dψj

dz
= ku

(
2∆γj

γ0
− ∆ω

ω0
− γ2

j β2
⊥j −K2/2

1 + K2/2

)
, (2)

with
∆γj = γj − γ0, ∆ω = ω − ω0,

where γj is the energy of the j-th electron, γ0 is the average
energy of the electron beam at the undulator entrance, ω0 is
the fundamental energy of the undulator radiation, and K
is the deflection parameter of the undulator.

The energy of each electron changes by interaction with
the radiation field, which is described by the equation

dγj
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=

e

mc2
(βjxe−ikuzeiψj + c.c.). (3)

The differential equations (1) ∼ (3) can be solved nu-
merically with a certain longitudinal step ∆z. In most FEL
simulations, a multiple length of the undulator period λu

is chosen for ∆z. This is because the electric field Ẽ and
electron energy γj do not change drastically over such a
length, and the equations can be averaged over ∆z with the
periodic condition of the magnetic field for ideal undula-
tors. For real undulators, however, the periodic condition
cannot be applied to modify the FEL equations because of
the field error intrinsic to the real undulators.

NUMERICAL IMPLEMENTATION

The most straightforward way to solve precisely the FEL
equations with the field-error effects taken into account is
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to adopt a fine integration step, i.e., ∆z � λu. Needless
to say, it takes a lot of computation time. Because Ẽ and
γj are slowly varying functions compared to λu even in the
case with the real undulator, averaging is again a promising
way for practical simulation. It should be noted, however,
that the averaging should be performed at every integration
step, i.e., z = ∆z, 2∆z, . . . , n∆z, . . .. In the following
sections, the FEL equations are modified to the forms that
are convenient for averaging.

Magnetic Field Model

In order to specify the electron trajectory in arbitrary
magnetic fields B, the equation of motion should be solved
with the Lorentz force taken into account, which needs 3-
dimensional field mapping. In the undulator line, however,
the electron trajectory can be decomposed into two compo-
nents, which considerably simplifies the problem.

One is the the sinusoidal (or more generally, quasi-
periodic) orbit that cause the interaction between the elec-
trons and radiation field. For real undulators, it also con-
tains random walks both in the horizontal (x) and vertical
(y) directions due to error fields. In general, it hardly de-
pends on the transverse coordinate of the injected electron
at the entrance of the undulator and is thus determined by
the magnetic field distribution Bu measured along the un-
dulator axis.

The other is the betatron oscillation induced by the fo-
cusing force on the electron beam generated by quadrupole
magnets and (natural) focusing in the undulator. It is rea-
sonable to assume that the focusing field Bf is uniform
over the distance occupied by each magnetic device as
shown in Fig. 1.
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Figure 1: Example of a magnetic device configuration and
focusing force distribution in the undulator line.

The above discussion arrows us to introduce an effective
magnetic field Beff that has no longitudinal components
and the form

Beff(r) = Bu(z) + Bf (x, y, z),

which can be used to calculate the electron trajectory in-
stead of the real field B. The field Bf (x, y, z) can be
regarded to be uniform with respect to z within a limited
range, e.g., za < z < zb as shown in Fig. 1.

Electron Motion

Now let us consider an electron travelling from z0 to z
with an initial condition β = β0 and r = (x0, y0, z0) at
the longitudinal position of z0. Assuming that the travelling
distance ∆z = z−z0 is much shorter than the period of the
betatron oscillation, the transverse position of the electron,
x and y, does not change significantly. Thus, the focusing
field Bf can be regarded to be constant. Then, the velocity
and position of the electron are obtained just by integrating
the field distribution along z axis

βx(z) = β0x + γ−1[Iuy(z0, z) + Ify(z0, z)], (4)

x(z) = β0x∆z + γ−1[Juy(z0, z) + Ify(z0, z)∆z/2],
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and similar expressions for the vertical components βy and
y.

Interaction Factor

In the differential equations (1) and (3), there exists an
identical factor βxeikuze−iψ (and its complex conjugate),
which is regarded to be an efficiency of interaction between
the electrons and radiation field. It is easy to show that this
factor is almost periodic with a period of λu/2. It is there-
fore necessary to average it over the distance of the integra-
tion step ∆z, which, in most cases, longer than λu/2. In
averaging, we can omit the trajectory components related
to the betatron oscillation because the period of the beta-
tron oscillation is much longer than λu, In other words, we
replace as follows

βx → Iuy/γ, (γβ⊥)2 → I2
uy + I2

ux.

In addition, we can neglect the terms ∆γ and ∆ω in the
phase equation because they are nearly constant over ∆z.
Then, we have

〈βxeikuze−iψ〉 = i
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γ
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with

Ja(z0) =
1

i∆z

∫ z

z0

Iuy(z′) exp
[
ikuρ(z0, z

′)
1 + K2/2

]
, (5)

and

ρ(z0, z) =
∫ z

z0

[I2
uy(z0, z

′) + I2
ux(z0, z

′)−K2/2]dz′

436 T. Tanaka / Proceedings of the 2004 FEL Conference, 435-438

TUPOS19



For ideal undulators without any field errors, Iux = 0 and
Iuy(z0, z) = K sin kuz, thus we have

Ja(z) =
K

2
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.

Substituting this formula into (1) gives an ordinary wave
equation to describe the amplification process in the FEL
driven by an ideal undulator.

Electron Phase

Because the electron energy does not change signifi-
cantly over ∆z, the electron phase can be calculated by
integrating equation (2) directly. Substituting (4) into (2)
and integrating between z0 and z, we have
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and similar expression for Ry . Note that the subscript j has
been omitted in the above equation for simplicity.

Processing of the Undulator Field Data

The above modifications on the FEL equations arrow us
to process the undulator field data convenient for numeri-
cal implementation, i.e., the entire undulator line is divided
into adequate integration steps and the quantities such as
Iuy , Juy and Ja are calculated in each step before start-
ing the simulation. In most x-ray FELs, the gain length is
much longer than the undulator period, which requires a
great number of periods to achieve saturation. Thus, longer
integration step is necessary to save the computation time.
The data processing scheme described here ensures a good
reproducibility of the electron motion and interaction effi-
ciency regardless of the length of the interaction step, as far
as the electron energy and radiation field does not change
drastically within the step.

After the data processing, the FEL equations can be
solved easily. The electron energy and phase can be cal-
culated by substituting (5) and (7) into (2) and (3). The
wave equation (1) that describes the growth of the radia-
tion field can be modified to a more convenient form for
numerical computation, by means of spatial and temporal
Fourier transforms [1].

EXAMPLES

An FEL simulation code, SIMPLEX, has been devel-
oped at SPring-8 using the numerical schemes described

above. Let us now show several examples of results to in-
vestigate the effects due to the undulator field error using
SIMPLEX. Accelerator and undulator parameters used in
the simulations are summarized in Table 1.

Electron Energy 250 MeV
Normalized Emittance 1πmm. mrad

Energy Spread 2× 10−4

Peak Current 2 kA
Average betatron function 7 m

Undulator Period 15 mm
Undulator Length 4.5 m
Undulator K Value 1.3

Wavelength 60 nm
Gain Length 0.16 m

Table 1: Example of a magnetic device configuration and
focusing force distribution in the undulator line.

Performance of SCSS Prototype Undulator

SCSS stands for “SPring-8 Compact SASE Source” and
aims at an X-ray FEL in the Angstrom wavelength region
[2]. A prototype undulator for the SCSS project has been
constructed in 2003, the details of which are described in
[3]. Here we check the magnetic performance of the pro-
totype. Figure 2(a) shows the phase errors as functions of
the longitudinal position calculated with the magnetic field
measured before and after the undulator field correction.
We can see a drastic improvement between the two. In
order to check the actual performance as an FEL driver,
we performed FEL simulations, the results of which are
shown in Fig. 2(b) as the radiation power growth along
the undulator. As in the phase error, the FEL gain curve is
improved significantly by the field correction, and we can
expect the radiation power close to the ideal value with the
constructed undulator.

Effects due to the Ambient Field

The ambient field means weak and uniform magnetic
fields that cause a parabolic electron orbit. The main source
for this is the geomagnetic field and/or an offset voltage of
the Hall probe that is usually used in the undulator field
measurement. In addition, the electron beam injected into
the undulator with a vertical position offset with respect to
the undulator axis experiences a parabolic-like orbit due to
the natural focusing, which brings undesirable effects sim-
ilar to those by the ambient field. The examples of the ef-
fects due to the ambient field ∆By in the vertical direction
are shown in Fig. 3 in terms of the electron trajectory and
power-growth curve. It is found that ∆By of 0.5 Gauss has
little effects on the FEL gain, while those of 1.0 Gauss are
not negligible.

Effects due to Inhomogeneous Demagnetization

It is well known that permanent magnets can be dam-
aged by irradiation of the electron beam, which cause an

T. Tanaka / Proceedings of the 2004 FEL Conference, 435-438 437

FEL Technology



0.0 1.5 3.0 4.5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-10

0

10

20

30

40

50

60

 Ideal
 Before
 After

R
a
d
ia

tio
n
 P

o
w

e
r 
(G

W
)

Distance from Undulator Entrance (m)

(b)

(a)

After(2.76)

Before(17.4)

P
h
a
se

 E
rr

o
r 
(d

e
g
re

e
)

Figure 2: Magnetic performances of the prototype undu-
lator for the SCSS in terms of the (a) phase error and (b)
power-growth curve.
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Figure 3: Effects due to the ambient fields of 0.5 and 1.0
Gauss on the (a) electron trajectory and (b) FEL gain.

inhomogeneous field variation along the undulator. As an
example, let us consider the case when the magnetic field
distribution is given as

By(z) = B0 sin(kuz)F (z),

with
F (z) = 1−Ae−z/D,

being an field envelope function to describe the radiation-
induced demagnetization, where A and D denote the max-

imal fraction and typical depth of demagnetization, respec-
tively. The examples are shown in Fig. 3 for two values
of A. The depth D is fixed at 1.0 m in each simulation.
We find a significant gain degradation even for the 0.5 %
demagnetization.
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Figure 4: Effects of radiation-induced demagnetization on
the (a) field envelope and (b) FEL gain for two values of
the maximal demagnetization fraction A.

SUMMARY

The FEL simulation code, SIMPLEX, has been intro-
duced. SIMPLEX has functions for FEL simulations
as follows: steady-state simulation with seeding; time-
dependent simulation with shot noise implementation for
SASE regime; wakefield implementation; error sources re-
lated to phase slippage between undulator segments, field
discrepancy, and trajectory straightness; graphical output.
SIMPLEX is freely available from the web site [4]. It is
equipped with a full graphical user interface for pre- and
post-processing and does not need any other commercial
softwares or libraries. Because of the portability of the
graphical library used in SIMPLEX, it works on many plat-
forms such as Microsoft Windows, Mac OS X, and unix-
based OS such as Linux.
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