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Abstract

In the Israeli Electrostatic Accelerator FEL (EAFEL),
the distance between the accelerator end and the wiggler
entrance is about 2.1 m. A 1.4 MeV, 2 Amp electron
beam is transported through this space using four simi-
lar quadrupoles. The transfer matrix method (ABCD ma-
trix method) was used for simulating the beam transport.
We found a reasonable agreement between experimental
results and simulations. The inverse problem of finding
the electron beam emittance at S1 screen position (before
quads) by using the spot dimensions at S2 screen (after
quads) as function of quad currents is considered. Spot
and beam are described as ellipses by using STB (Spot-to-
Beam) procedure [1], and the trace-ellipse transformation
is used to find the emittance.

EXPERIMENTAL LAYOUT

The scheme of quadrupoles Q1-Q4 and diagnostic
screens S1 and S2 between the end of accelerator and the
wiggler entrance at the Israeli EAFEL [2] is shown in
Fig. 1. We use the following numerical values of param-

Acc
S1

d1 dq d d2

S2
Wig

Q1 Q2 Q3 Q4

Figure 1: Experimental layout (not in scale).

eters: E = 1.4 MeV, electron beam energy; d = 0.205 m,
drift space between quadrupoles; dq = 0.140 m, effective
length of quadrupoles; d1 = 0.207 m, drift space between
S1 screen and first quadrupole; d2 = 0.308 m, drift space
between last quadrupole and S2 screen; however all formu-
las are quite general and valid for any value of the parame-
ters involved.

TRANSFER MATRICES

We need transfer matrices of two kinds: for drift space
and for quads (see, e.g., [3], [4]).
Drift space matrices are

D =
(

1 d
0 1

)
, Di =

(
1 di

0 1

)
, i = 1, 2. (1)

Converging and diverging quadrupole matrices are

Mc (I) =
(

c s/t
−s t c

)
,

c = cos (t dq) ,
s = sin (t dq) ,

(2)
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Md (I) =
(

ch sh/t
sh t ch

)
,

ch = cosh (t dq) ,
sh = sinh (t dq) ,

(3)

t ≡
√

α I, α =
e η

γ mv
= 24.78 A−1m−2, (4)

where I is quad’s current, e,m, v, γ are electron’s charge,
mass, velocity, and relativistic parameter, η is quad’s mag-
netic field gradient, η = 0.1522 T/m for quads used in
EAFEL, and value of α is given for E=1.4 MeV beam en-
ergy.

It is of interest to mention, comparing (2) and (3), that
Md (I) = Mc (−I).

The combined transfer matrix from S1 to S2 for X-
coordinate is a scalar product of all relevant matrices

Mx = D2 ·Md (I4) ·D ·Mc (I3)
·D ·Md (I2) ·D ·Mc (I1) ·D1. (5)

Without loss of generality we consider in (5) the case when
the first quadrupole is converging in X (and diverging in
Y , but we consider here only X-coordinate of the beam).
To simplify notations, we write down the matrix Mx as

Mx =
(

Ax Bx

Cx Dx

)
, (6)

with det (Mx) = 1, that is:

Ax Dx −Bx Cx = 1. (7)

Relation between initial, at screen S1, beam parameters
(x1, x

′
1), and final, at screen S2, beam parameters (x2, x

′
2)

is (
x2

x′2

)
= Mx ·

(
x1

x′1

)
. (8)

BEAM WAIST AT S1

Of particular interest is the case where initially, at screen
S1, there is a waist of circular beam with emittance εx =
εy = ε · π and radius Rx = Ry = r1; then the equation of
the trace-ellipse is (without loss of generality, hereafter we
consider only X-coordinate)

(
x1

r1

)2

+
(

x′1
ε/r1

)2

= 1. (9)

We note that ”area” of the ellipse (9) is S = π ε, that is the
area of trace-ellipse is a measure of beam emittance. The
maximal values of x1 and x′1 are r1 and ε/r1, respectively.
Expressing (x1, x

′
1) in terms of (x2, x

′
2) from Eq. (8),

(
x1

x′1

)
= M

−1

x ·
(

x2

x′2

)
, (10)
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and inserting (x1, x
′
1) from Eq. (10) into Eq. (9), we obtain

the equation for the final trace-ellipse at screen S2

ax x2
2 + 2 bx x2 x′2 + cx x′2

2 = 1, (11)

ax =
(

Dx

r1

)2

+
(

Cx

ε/r1

)2

,

bx = −Bx Dx

r2
1

− Ax Cx

(ε/r1)2
,

cx =
(

Bx

r1

)2

+
(

Ax

ε/r1

)2

. (12)

Here coefficients ax, bx, and cx are functions of all
twelve input parameters: d1, d, d2, dq, η, r1, ε, I1, I2,
I3, I4, E. Note that due to the paraxial approximation,
determinants of all used transfer matrices are equal to 1,
hence the area of final trace-ellipse (11) is equal to the area
of initial trace-ellipse (9), that is emittance of the beam is
preserved (in both X- and Y -coordinates).
We notice that

ax cx − b2
x = 1/ε2, (13)

analog of Courant-Snyder invariant. Thus coefficients
ax, bx, cx are analogs of the transport parameters or Twiss
parameters.

Beam envelope at S2

From Eq. (11) we may find parameters of the beam at S2
screen position. The envelope of beam in X is

r2 = x2,max =
√

cx

ax cx − b2
x

= ε
√

cx. (14)

The slope of the beam envelope is

r
′
2 = (x2,max)

′
= − ε bx√

cx
. (15)

The area of the final trace-ellipse is equal to area of the
initial trace-ellipse that is the emittance is preserved. Max-
imal value of x′2 is

(x′2)max =
√

ax/ε. (16)

Notice the difference between (x2,max)′ and (x′2)max: the
first is x′2 at point x2 = x2,max, while the second is x′2
at the point where x′2 is maximal. From (14) and (12) the
radius of beam in X-coordinate is

r2 = r1

√(
εBx

r2
1

)2

+ A2
x. (17)

Also from (15) and (12) the condition r′2 = 0 for the beam
waist at S2 is

Bx Dx ε2 = −Ax Cx r4
1. (18)

If we require that beam has a waist also in Y-direction then
we have similar equation

By Dy ε2 = −Ay Cy r4
1. (19)

Equations (18, 19) are two equations for four free parame-
ters, quad currents, so we have in principle a 2D set of pos-
sible solutions (not all of them having physical meaning).
Equation (17) allows a fully analytical study of beam ra-
dius r2 at S2 as function of any variable parameter (mainly
quad currents) assuming that beam at S1 is at its waist
and has emittance ε, while we can measure radius r1 from
spot at S1. As an example, for beam waist at S1 with
r1 = 14 mm and ε = 6 mm mrad, expansion of transfer
matrix elements up to terms linear in quad currents gives

Ax = 1− 4.90 I1 + 3.71 I2 − 2.51 I3 + 1.31 I4,
Bx = 1.69− 1.35 I1 + 2.30 I2 − 2.42 I3 + 1.72 I4,
Cx = 3.47 (−I1 + I2 − I3 + I4),
Dx = 1− 0.961 I1 + 2.16 I2 − 3.35 I3 + 4.55 I4,
r2 = 14.02− 68.6 I1 + 51.8 I2 − 35.1 I3 + 18.4 I4.

(20)
In another case with I1 = I2 = I3 = I4 = I , expansion
can be easily made up to I4:

Ax = 1− 2.39 I − 3.57 I2 + 1.26 I3 + 1.32 I4,
Bx = 1.69 + 0.242 I − 1.68 I2 − 0.128 I3 + 0.336 I4,
Cx = −7.18 I2 + 3.77 I4,
Dx = 1 + 2.39 I − 2.84 I2 − 1.26 I3 + 0.944 I4,
r2 = 14.02− 33.46 I − 49.77 I2 + 18.21 I3 + 20.21 I4.

(21)
Note that in practice approximations (20) can be used

for values of currents lower less than ≈ .1 A, while (21)
are good up to I ≈ .25 A, see Fig. 2.
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Figure 2: Radius r2 of beam at S2 vs. current I =
I1 = . . . = I4; beam has waist at S1, with emittance
ε = 6 mm mrad, and radius r1 = 14 mm. Blue dashed
line is approximation for r2 in Eq. (21). Note that, at min-
ima, the radius of beam is very small, yet non-zero.

Beam emittance at S1

We can reverse Eq. (17) to find emittance from experi-
mentally measurable radii of beam, r1 and r2, at S1 and S2
(and known quad currents)

ε1 =
r1

Bx

√
r2
2 − (r1 Ax)2. (22)
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Though in paraxial approximation the beam emittance is
preserved, that is ε1 = ε2, still we keep index 1 at ε1

taking into account that real experimental errors (and non-
linearities in electron-optic elements) will give a set of val-
ues of emittance (for various quad currents) and all these
refer to beam emittance at S1 (and should be properly av-
eraged). Also we note that the procedure of emittance find-
ing by Eq. (22) is applicable for any electron-optic ele-
ment (e.g. solenoid) which can be described in terms of
transfer matrix. The only (but very essential) assumption
is that beam has a waist at S1. The other (not so essen-
tial for the real parameters used in EAFEL) assumption
is neglecting space-charge effects, which is admissible in
our first approximation. Also of interest is to mention that
for switched off quads (all quad currents are zero) we have
Ax = 1, and Bx = 1.69 m (full distance from S1 to S2),
and we recover from (22) the well-known envelope equa-
tion for free-space expansion of beam with non-zero expan-
sion. In this relation we note that distance Bx = 1.69 m
is too small to deduce the emittance by usually used for-
mula ε ≈ r2 r1/Bx, which gives a much smaller value of
emittance. The exact formula is

ε =
r1

Bx

√
r2
2 − r2

1. (23)

EXPERIMENT AND SIMULATIONS

Experimental data

In Fig. 3 some pictures are presented of spot at S2
for various currents of Q3 and Q4, while I1=1.26 A and
I2=1.14 A are kept constant. The quality of pictures does
not allow to measure accurately the dimensions of spot
(and beam), though general feature (strong dependence on
I3 and very weak dependence on I4) is evident. Spot at
S1 (not depending on quad currents) was treated by STB
procedure [1] and found to have radii rx = 15 mm and
ry = 9 mm.

Figure 3: Spot at S2 for various currents I3 and I4, for
I1=1.26 A and I2=1.14 A.

Simulations

In Table 1 the radii in X- and Y-coordinates are
shown according to Eq. (17), for two emittances, 6 and
18 mm mrad.

Table 1: Radii of beam at S2, in mm, for various I3 and I4,
for fixed currents I1=1.26 A and I2=1.14 A

I4=.67 I4=.77 I4=.87
I3 / ε rx ry rx ry rx ry

1.26 / 6 11.8 2.4 14.3 1.2 16.7 0.23
1.26 / 18 11.8 2.6 14.3 1.5 16.7 0.69
1.36 / 6 1.8 4.1 3.7 2.8 5.7 2.8

1.36 / 18 4.3 6.8 3.0 4.6 5.7 1.7
1.46 / 6 8.1 5.9 6.7 4.4 20.1 5.0

1.46 / 18 8.2 6.1 6.7 4.5 20.1 5.1

The values of radii of beam at S1 rx = 15 mm and
ry = 9 mm are used. The general tendency is in agree-
ment with experimental data. The very small dependence
of spot dimensions on beam emittance is good from one
point of view (the simulation results are safe), and not so
good from the other point of view (defining the beam emit-
tance is very difficult, practically impossible for given quad
currents). We note, that though not so critical in defining
the beam dimensions at S2, the value of the emittance is
critical for the beam quality and for getting lasing in the
wiggler.

DISCUSSION

We reported here briefly on the procedure used for sim-
ulation of electron beam transport between accelerator sec-
tion and the wiggler of the Israeli EA FEL. The formu-
las for envelope Eq. (17) and for emittance Eq. (22) of
the beam at S2 are valid under the assumption that at S1
there is the beam’s waist (in the relevant coordinate). An-
other assumption is neglecting the (small) space-charge ef-
fects. We note also that Eq. (17) and Eq. (22) are valid for
any current distribution (without ”holes”) across the beam
cross-section. The case of converging/diverging beam at
S1 screen can be treated by introducing a virtual focus-
ing/defocusing coil at the S1 position. It changes the re-
sultant transfer matrix while Eq. (17) and Eq. (22) are
not changed. Also included in the program (mainly in
MATEMATICA) are cases of arbitrary trace-ellipse and
non-circular non-centered beam at S1, and due to space rea-
sons we only mention them here.
The problem with finding beam emittance at S1 from spot
at S2 (spot’s variation with quad currents) is that, for most
quad currents practically used in the EAFEL, the spot at S2
depends on emittance very weakly. We attempted to find
the situation when the influence of emittance on spot is es-
sential. Note that transfer matrix elements Ax and Bx in
Eq. (17) and Eq. (22) do not depend on beam emittance or
radius at S1 but only on quad parameters (and beam en-
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ergy). For example, the situation Ax = 0 is the most fa-
vorite for defining emittance. In this case the beam radius
at S2 is proportional to the beam emittance at S1 and in-
versely proportional to the beam radius at S1. However, in
all considered cases when Ax = 0 the resulting spot/beam
radius at S2 screen is very small (due to small value of Bx)
and the exact measurements are impossible (also due to a
rather poor quality of pictures obtained by the frame grab-
ber hardware and software available to us at present). Still
we believe that the ”quad scanning method” (which is not
claimed to be quite novel, see, e.g., [5]) can be successfully
applied in the future experiments in EAFEL. What we re-
ported here are only the preliminary results.
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