

Short Rayleigh Length Free Electron Lasers

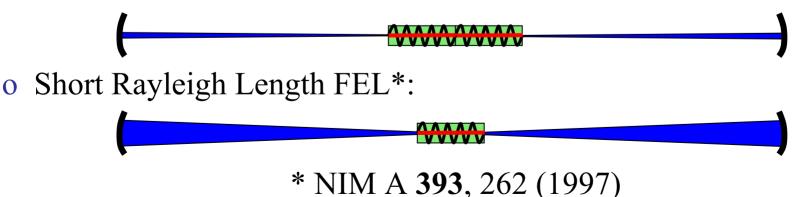
Bill Colson, Bob Armstead, Joe Blau, Pete Crooker *Physics Department Naval Postgraduate School, Monterey CA 93923* FEL Conference, August 2004

o Acknowledgements: NPS students over last 8 years,

Alan Todd (AES), and George Neil & Steve Benson (Jlab)

- o Motivation: consider compact FEL oscillators
 - o Scientific laboratories want compact FELs
 - o Industrial & military applications need compact FELs
 - o Assume "compact" means mirror separation S < 12 m
 - o Mirror damage at intensities $I > 1 \rightarrow 10 kW/cm^2$
 - o Typical FEL design: ⊥ size ≈ 1mm, || length ≈ 10m
 => mirror damage limits optical power !!

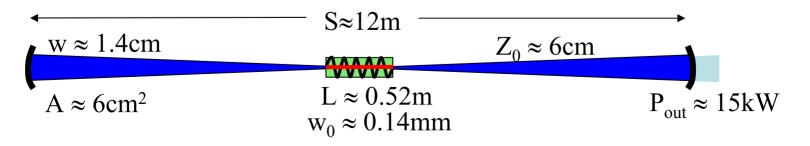
FEL Design Examples

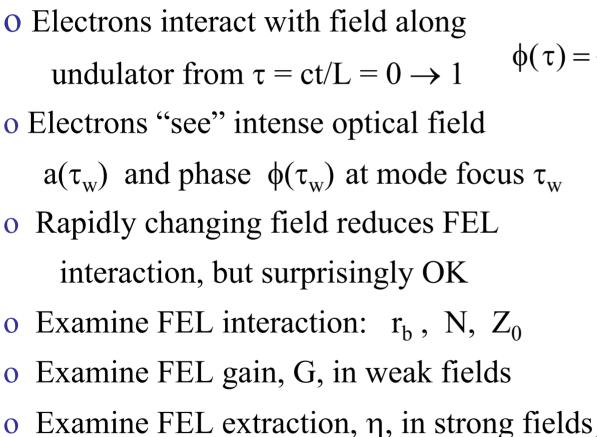


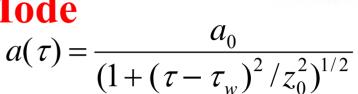
- o Assume: Compact FEL mirror separation: $S \approx 12$ m
 - o Mirror damage at intensities like $I > 1 \rightarrow 10 kW/cm^2$
 - o Diffraction of mode radius $w(z) = w_0 (1+z^2/Z_0^2)^{1/2}$ where optical Rayleigh length is $Z_0 = \pi w_0^2 / \lambda$
 - o Typical FEL interaction gives $w_0 \approx 2r_b \approx 1mm$
 - o Resonator output coupling (10%): $Q_n \approx 10$
- o Example 1: desired wavelength $\lambda \approx 1 \mu m$ (infrared) o FEL interaction: $w_0 \approx 2r_b \approx 1mm \implies Z_0 \approx 3m$ o Mode area at mirror ($z \approx S/2 \approx 6m$) is $A \approx 0.15 cm^2$ Therefore: FEL power limited to $P_{out} < 150W$
- o Example 2: desired wavelength $\lambda \approx 0.1 \mu m$ (UV) o FEL interaction: $w_0 \approx 2r_b \approx 1mm \implies Z_0 \approx 30m$ o Mode area at mirror ($z \approx S/2 \approx 6m$) is $A \approx 0.03 cm^2$ Therefore: FEL power limited to $P_{out} < 3W$

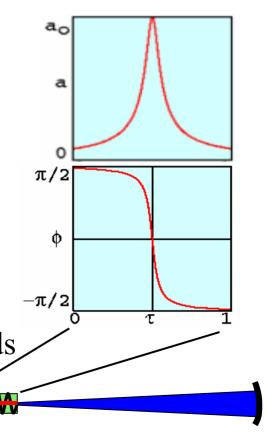
Short Rayleigh Length FEL Concept

- where L is undulator length, typically $L \approx$ meters
- o Short Rayleigh Length (SRL) reduces mirror intensity
- o Determine SRL by adjust mirror radius of curvature
- o FEL interaction altered with SRL mode:
 - o rapidly changing optical amplitude and phase bad !
- o accelerated bunching in more intense optical fields good !o Conventional FEL:

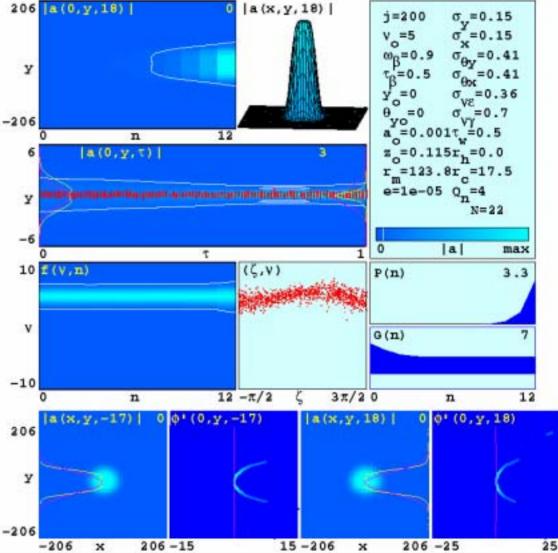



A Short Rayleigh Length FEL Design


- o SRL expands mode and protects mirrors
- o Expanding mode requires shorter undulator length L
- o Shorter L requires adequate peak current in micropulse
- o Example SRL FEL:
 - o Undulator: N \approx 22, L \approx 52cm, $\lambda_o \approx$ 2.36cm, K \approx 1
 - o Electron Beam: $E_b \approx 80 \text{MeV}, I_{\text{peak}} \approx 400 \text{A}, r_b \approx 0.06 \text{mm}$
 - o Optical: $\lambda = \lambda_o (1+K^2)/2\gamma^2 \approx 1 \mu m$
 - o Resonator: S $\approx 12m$, $Z_0 \approx 6cm,\,w_0 \approx 0.14mm,\,\,Q_n \approx 4$
 - o At mirror: $w \approx 1.4$ cm, $A \approx S^2 \lambda / 4Z_0 \approx 6$ cm², $P_{out} \approx 15$ kW


FEL Interaction with a Short Rayleigh Length Mode

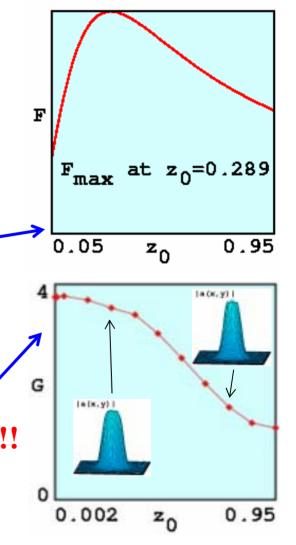
0


$$\phi(\tau) = -\tan^{-1}((\tau - \tau_w)/z_0)$$

Multimode FEL Simulations

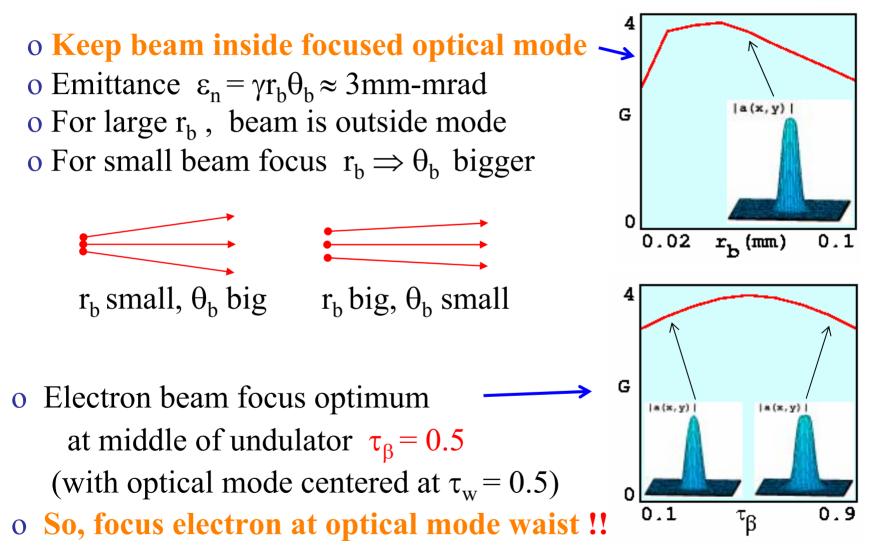
o Simulation follows: o Many \perp modes o Optical diffraction o Betatron motion o Energy spread o Mirror vibration o Beam alignment o Self-consistent o SVAP approx. o Note: o mode shape mode in undulator mode at mirrors steady-state gain 0

o See Poster: MOPOS65

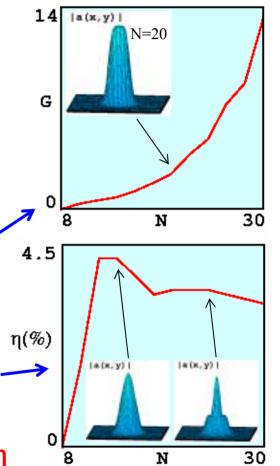


Vary Rayleigh Length

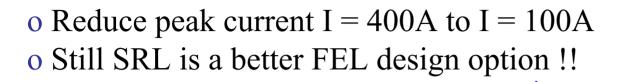
o Vary $Z_0 = 2.6$ cm to $Z_0 = 49$ cm o Normalized Rayleigh length $z_0 = Z_0/L$ o Mode area at mirrors is $A_{S/2} \propto 1/z_0$ as desired to reduce mirror intensity o Mode area at waist is $A_0 \propto z_0$ • Mode area averaged over undulator is $<A> \propto [z_0 + 1/(12z_0)] \propto 1/F$ (above) o Simple theory: $G \propto F$ (filling factor) o G_{max} at $z_0 = (12)^{-1/2}$; $Z_0 = L/(12)^{1/2}$ o Simulation allows many optical modes: o Gain G increases for small z_0 values !!


- o Small $Z_0 \Rightarrow$ still good gain !!
- o Can save mirrors with good gain !!

Vary Electron Beam Focus

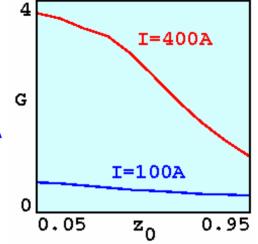


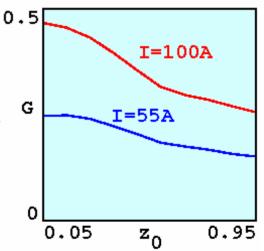
Vary Undulator Length N


o Vary N from 8 to 30 periods
o Undulator period fixed at λ_o ≈ 2.36cm to give λ ≈ 1µm optical wavelength
o Undulator gap is g ≈ 1cm
o Mode scraping not an issue for small N's

- o N > 8 needed for $G > 1/Q_n$, "threshold"
- o Gain increases rapidly with increasing N
- o Extraction $\eta \approx 4.3\%$ peaks at N ≈ 12 14
- Extraction decreases as $\approx 1/2N$
- o Use N = 22 in design: **BIG Gain, good** η
- o See Poster: MOPOS66

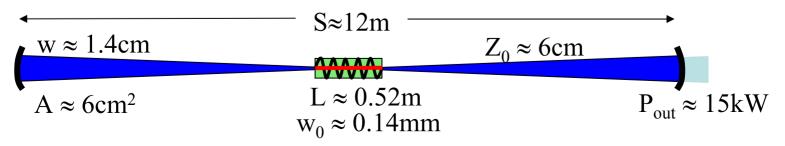
Short Rayleigh Length FELs


o New example SRL FEL:


- o Same Undulator: N≈22, L≈52cm, K≈1
- o Resonator: S \approx 12m , Z₀ \approx 6cm, Q_n \approx 20
- o Same Optical wavelength: $\lambda \approx 1 \mu m$
- o New Electron Beam: $E_b \approx 80 MeV$,
 - $\varepsilon_n \approx 10$ mm-mrad (typical emittance) $r_h \approx 0.1$ mm (beam focal radius)

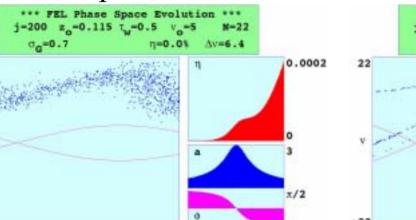
$I_{\text{peak}} \approx 100 \text{A}$, and $I_{\text{peak}} \approx 55 \text{A}$

- o SRL gives better FEL gain in each case
- o Appears that SRL FEL is just a better design !!

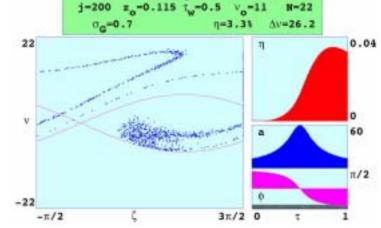


Conclusions: SRL Advantages & Issues

- o Short Rayleigh Length (SRL) optical mode \Rightarrow 2 advantages
 - o reduces optical intensity on resonator mirrors at smaller S
- o single optical wavefront amplified \Rightarrow excellent beam quality o **Issues:** (See Poster: THPOS59)
- o Electron Beam Optical Mode Alignment is delicate:
 - o Electron beam ($r_b \approx 60 \mu m$) < optical mode ($w_o \approx 140 \mu m$)
 - o But, FELs now hold beam to tolerance of $0.1r_b \approx 6\mu m$!!
- Optical Resonator Mirror Alignment is delicate :
 - o Mirror must "aim" mode back to small waist $\approx w_0$ over $\approx S$
 - o So, allowed mirror tilt $\Delta \theta \approx w_o/S \approx a$ few µradians
 - o But, FELs now hold to $\approx 0.1 \mu$ radians \Rightarrow Active Alignment !!


SRL FEL Phase Space

- o Show phase space evolution for weak & strong fields
- o Separatrix "balloons" to "pull down" bunched electrons
- Electron bunching mechanism is **NOT** conventional
- o Note optical amplitude sharp focus and phase shift


weak optical fields

 $-\pi/2$

 $3\pi/2$

strong optical fields

