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Abstract

Motivated by the prospect of constructing an FEL with
short Rayleigh length in a high-vibration environment, we
have studied the effect of mirror vibration and distortion
on the behavior of the fundamental optical mode of a cold-
cavity resonator. A tilt or transverse shift of a mirror causes
the optical mode to rock sinusoidally about the original res-
onator axis. A longitudinal mirror shift or a change in the
mirror’s radius of curvature causes the beam diameter at a
mirror to dilate and contract with successive impacts. Re-
sults from both ray-tracing techniques and wavefront prop-
agation simulations are in excellent agreement.

INTRODUCTION

Some designs for a high-power free electron laser (FEL)
call for a short Rayleigh length optical resonator in order
to reduce the system size while minimizing heat damage to
the mirrors [1, 2]. An additional advantage of this design is
improved optical beam quality, due to the small interaction
region in the center of the resonator [3]. However, this de-
sign raises concerns about mode stability, in particular the
sensitivity to motions of the mirrors. This paper presents
a study of the effect on beam behavior of mirror motion
and mirror radius change, particularly as they affect short
Rayleigh length resonators.

We study the results of several cavity distortions: mirror
tilt, transverse and longitudinal shifts in mirror position,
and changes in mirror focal length. In order to isolate res-
onator effects, our results are for a resonator alone with
no gain. Since mirror motions are relatively slow (∼ms)
compared with the optical round trip time (∼ns), the mo-
tions are assumed to be fixed over many passes of the beam
through the resonator.

In general, the optical beam in a laser resonator retraces
itself — it is an eigenmode of the resonator. If a mirror
is misaligned or distorted, however, the resonator eigen-
mode will be redefined and the existing optical beam will
tend to walk around the mirrors [4]. For sufficiently large
misalignment, the beam radius may increase indefinitely
— i.e., the resonator may become unstable. These effects
are most pronounced for short Rayleigh length resonators,
which are already near the stability limit. In practical terms,
the mirror misalignment and distortion will cause the beam
displacement to exceed the size of the mirrors, thereby cre-
ating beam loss and lowering the resonatorQ.
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SIMULATION TECHNIQUES

We start by assuming a resonator with two identical mir-
rors of radius of curvatureR (focal lengthf = R/2) sepa-
rated by distanceS and enclosing a Gaussian beam which
is an eigenmode of the resonator with Rayleigh lengthz0

(Fig. 1). If we normalize all longitudinal distances byS,
all transverse distances by(λS/π)1/2 and all angles by
(λ/πS)1/2, thenf = z2

0 + 1/4, and the1/e radius of the
beam at anyz is w(z) = (z0 +z2/z0)1/2. In particular, the

waist radius isw0 = z
1/2
0 [5]. For a 10 m long resonator

with λ = 1µm, the transverse scaling length is 1.8 mm and
the scaling angle is 0.18 mrad.
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Figure 1: Resonator with Gaussian mode characterized by
Rayleigh lengthz0. Distortions of the right-hand mirror
include tilt θm, transverse shifth, longitudinal shift∆S,
and focal length change∆f (not shown).

The beam is simulated using two techniques. In the
ray tracing technique, a Gaussian beam is simulated by
a random collection of rays, Gaussian distributed in both
transverse positiony and angleθ and set up at the beam
waist [6]. For a beam whose amplitude in they-plane is
A exp(−y2/w2

0), the joint probability density is given by

f(y, θ). Setting the distribution widths toδy = w0 = z
1/2
0

andδθ = θ0 = z
−1/2
0 ,

f(y, θ) =
1
π

e−(y2+z2
0θ2)/z0 . (1)

Hereθ0 is the angular spread of the beam atz � z0 as
shown in Fig. 1. Each ray is then propagated numerically
with the usual ABCD ray matrices and the evolving ray
density and direction is found to closely emulate the actual
behavior of a Gaussian beam .

In thewave propagation technique [1], the spatial part of
the Gaussian beama(x, y, z)is set up at the beam waist and
then propagated numerically by the paraxial wave equation
∂za = (−i/4)∇2

⊥a .
Both simulation methods can accommodate tilted,
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Figure 2: Evolution of an optical beam in a resonator with
z0 = 0.1 andθm = 0.05. Each vertical line corresponds
to a mirror, with the successive reflections unfolded to see
the overall behavior. The shaded area shows the trajecto-
ries of 1000 random rays; the center line is the center of
the optical beam; and the top and bottom lines, calculated
from beam theory, correspond to the radiusw(z) for the
Gaussian mode.

shifted, and distorted mirrors, while the latter method can
also incorporate laser gain.

In a third analytical method [5], the Gaussian beam is
represented by complex beam radiusq(z) = z + iz0. Prop-
agation is then accomplished using the ABCD matrix ele-
ments in the formq2 = (Aq1 + B)/(Cq1 + D) and ex-
tracting the beam front curvatureR(z) and beam radius
w(z)from1/q = 1/R−i/w2. This method will accommo-
date longitudinal mirror shift and focal length change only.
However, when coupled with ray tracing, can also describe
the effects of tilt and transverse shift of the mirrors.

MIRROR TILT AND SHIFT

We now let the right-hand mirror undergo tiltθm and/or
transverse shifth and investigate the subsequent behavior
of the Gaussian beam. The immediate effect is that the
reflection angle of any ray incident on the mirror will be
increased by2θm + h/f . The resonatorwill remain stable,
but a new resonator axis will be defined which tilts with
respect to the old axis by amountφ, where

φ = −[(1 + 4z2
0)θm + 2h]/(8z2

0). (2)

The optical beam, which initially was an eigenmode of the
old resonator, now becomes tilted with respect to the new
axis and is no longer an eigenmode of the realigned res-
onator. Consequently, with each reflection, its angle with
respect to the old axis will change in a rocking fashion, de-
pending on the value ofz0.

The effect of the rocking over many passesn is to make
the beam position on the mirror walk sinusoidally up and
down. If yn is the beam position on the mirror aftern re-
flections [5],

yn = C1[1− cos(αn)] + C2 sin(αn) (3)

where

α = cos−1

(
2f2 − 4f + 1

2f2

)
, (4)

Figure 3:z0 dependence of the maximum excursiony c of
the beam center from the original cavity axis when a mirror
tilts byθm or undergoes transverse shifth. Tilt and shift are
plotted separately. The lines are beam theory; the points are
from wave simulations. For an FEL withS = 10 m andλ =
1 µm, yc = 10 corresponds to 1.8 cm.

C1 =
(

2f − 1
4f − 1

)
(h + 2fθm) , (5)

C2 =
−(h + 2fθm)√

4f − 1
. (6)

Figure 2 shows the result of mirror tilt. The beam is
started on axis with the right mirror tilted. Successive re-
flections of the beam are unfolded, so that the horizontal
axis is time. The beam angle changes continually, depend-
ing onz0 and, for this figure,θm. In general, the maximum
deflection of the beam centeryc is proportional toθm and
h, as calculated from Eq.(3):

yc =
(4z2

0 + 1)θm + 2h

8z2
0

. (7)

The rocking periodn0 can also be calculated:n0 = 2π/α.
For the smallz0 case we are concerned with here,yc is

a strong function ofz0. We show this dependence in Fig. 3
whereyc/θm andyc/h are plotted separately againstz0.
As z0 becomes smaller, the transverse excursions become
comparable to the mirror diameter and the beam will walk
off the mirrors.

LONGITUDINAL MIRROR SHIFT

Let the resonator contain a Gaussian beam which is a
resonator eigenmode with Rayleigh lengthz0. Sincez0

is small, the mirror focal lengthsf = z2
0 + 1/4 are al-

ready only slightly larger than the resonator stability limit
fmin = 1/4. Let the right-hand mirror shift by (normal-
ized) amount∆S in thez-direction. Successive reflections
of the beam will remain on axis, but the Rayleigh lengths
of the beam and the resonator eigenmode will no longer be
equal. If∆S is positive (cavity length increases), the focal
lengths decrease tof ′ = f/(1 + ∆S), and if f ′ < 1/4,
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Figure 4: Evolution of an optical beam in a resonator with
z0 = 0.1 and right mirror shift∆S/S = 0.031. The verti-
cal lines represent mirrors, with successive reflections un-
folded to see the overall behavior. The gray areas are the
trajectories of 1000 random rays; the dotted lines, calcu-
lated from beam theory, correspond to the radiusw(z) of
the Gaussian mode. The beam remains on axis, but expands
and contracts with successive reflections.

the resonator will become unstable and the beam will ex-
pand without limit. The maximum allowable value for∆S
is therefore∆Smax = 4f − 1 = 4z2

0 .

If ∆S < ∆Smax, the resonator remains stable but the
beam will no longer retrace itself in succeeding passes, as
shown in Fig. 4. With each pass, the beam width at the
mirrors will expand and contract, depending on both∆S
andz0. Figure 5 shows the effect of varying∆S for sev-
eral z0. For ∆S < ∆Smax, the effect onymax is small.
However, as∆S approaches∆Smax, ymax increases and
finally diverges at∆Smax.

For ∆S < 0 (resonator length decreases), the resonator
remains stable but the beam width again expands dramati-
cally as the difference between the Rayleigh lengths of the
beam and the resonator eigenmode becomes large.

Figure 5: Maximum beam radiusymax for right-hand mir-
ror shift ∆S at several values ofz0. The vertical dashed
lines show the limits of resonator stability at∆Smax =
4z2

0 . The data points are taken from ray and beam simula-
tions; the solid lines are guides to the eye. For an FEL with
S = 10 m and λ= 1µm,ymax = 10 corresponds to 1.8 cm.

Figure 6: Evolution of an optical beam in a resonator with
z0 = 0.1 and right mirror shift∆f/f = −0.05.

MIRROR DISTORTION

Now let the focal lengthf of the right-hand mirror in the
previously undistorted resonator change by amount∆f/f .
Since the mirror focal lengths are unequal, the mode waist
of the resonator eigenmode will move away from the res-
onator center. The effect is to change the resonator eigen-
mode so that it no longer corresponds to the original beam.
Consequently the beam radius on the mirror will expand
and contract with each subsequent reflection, as shown in
Fig. 6. In addition, if∆f/f is negative (a decrease in the
mirror focal length) and made too large, the resonator will
no longer be stable and the beam will diverge indefinitely.
The stability criterion is∆f > −8z2

0/(1 + 4z2
0).

Figure 7 shows the results from our simulations. The
beam radius at the mirror isymax, as before. As∆f is
made increasingly negative,ymax increases slowly as the
threshold for resonator instability (vertical dashed lines) is
approached, and then diverges sharply at the threshold.

DISCUSSION

We have shown that for a short Rayleigh length resonator
with no gain, the effects of mirror tilt, shift, and focal length

Figure 7: Maximum beam radiusymax for focal length
change∆f/f of the right-hand mirror at several values
of z0. The minus sign in front of∆f indicates the focal
length is decreasing. The points are taken from ray sim-
ulations and beam calculations; the solid lines are guides
to the eye; and the vertical dashed lines show the limits of
resonator stability at∆f = −8z2

0/(1 + 4z2
0).
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change can produce dramatic changes in the beam direction
and width. In the cases of mirror tilt and transverse shift,
the effect is to cause the beam to rock up and down on the
mirrors and, if the rocking amplitude is sufficiently large, to
cause the beam position to exceed the mirror radius. In the
cases of longitudinal mirror shift and focal length change,
the beam will remain on axis but the beam radius at the
mirror will expand and contract with successive reflections.
If the beam radius becomes too large, portions of the beam
may exceed the mirror radius. In either case beam power
can be lost, or, equivalently, the cavityQ will be reduced.
For comparison with actual mirrors, they-axes in Fig. 3,
5, and 6 can be converted to real values by multiplying by
the transverse scaling length(λS/π)1/2. For a laser with
S = 10 m andλ = 1 µm, y = 10 corresponds to an actual
y of 1.8 cm.
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