FREE ELECTRON LASERS IN 2004

W. B. Colson^{*} and B. W. Williams Physics Department, Naval Postgraduate School, Monterey CA 93943 USA

Abstract

Twenty-seven years after the first operation of the free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs operating in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

INTRODUCTION

The following tables list existing (Table 1) and proposed (Table 2) relativistic free electron lasers (FELs) in 2004. Each FEL is identified by a location or institution, followed by the FEL's name in parentheses; references are listed in Tables 3 and 4.

The first column of the table lists the operating wavelength λ , or wavelength range. The large range of operating wavelengths, six orders of magnitude, indicates the flexible design characteristics of the FEL mechanism. In the second column, σ_z is the electron pulse length divided by the speed of light *c*, and ranges from almost CW to short sub-picosecond pulse time scales. The expected optical pulse length can be 3 to 5 times shorter or longer than the electron pulse depending on the optical cavity *Q*, the FEL desynchronism, and the FEL gain. If the FEL is in an electron storage-ring, the optical pulse is typically much shorter than the electron pulse. Most FEL oscillators produce an optical spectrum that is Fourier transform limited by the optical pulse length.

The electron beam energy E and peak current Iprovided by the accelerator are listed in the third and fourth columns. The next three columns list the number of undulator periods N, the undulator wavelength λ_0 , and the undulator parameter $K = eB\lambda_0/2\pi mc^2$ where e is the electron charge magnitude, B is the rms undulator field strength, and *m* is the electron mass. For an FEL klystron undulator, there are multiple undulator sections as listed in the N-column. Note that the range of values for N, λ_0 , and K are much smaller than for the other parameters, indicating that most undulators are similar. Only a few of the FELs use the klystron undulator at present, and the rest use the conventional periodic undulator. The FEL resonance condition, $\lambda = \lambda_0 (1 + K^2)/2\gamma^2$ where γ is the relativistic Lorentz factor, provides a relationship that can be used to derive K from λ , E, and λ_0 . The middle entry of the last column lists the accelerator type (RF for Radio Frequency Linear Accelerator, MA for Microtron Accelerator, SR for Storage Ring, EA for Electrostatic

Accelerator), and the FEL type (A for FEL Amplifier, O for FEL Oscillator, S for SASE FEL, H for a high-gain high harmonic HGHG FEL). Most of the FELs are oscillators, but recent progress has resulted in short wavelength FELs using SASE (Stimulated Amplification of Spontaneous Emission).

For the conventional undulator, the peak optical power can be estimated by the fraction of the electron beam peak power that spans the undulator spectral bandwidth, 1/4N, or $P \approx EI/4eN$. For the FEL using a storage ring, the optical power causing saturation is substantially less than this estimate and depends on ring properties. For the high-gain FEL amplifier, the optical power at saturation can be substantially greater. The average FEL power is determined by the duty cycle, or spacing between electron pulses, and is typically many orders of magnitude lower than the peak power. The TJNAF IRFEL has now reached an average power of 10 kW with the recovery of the electron beam energy in superconducting accelerator cavities.

In the FEL oscillator, the optical mode that best couples to the electron beam in an undulator of length $L=N\lambda_0$ has Rayleigh length $z_0\approx L/12^{1/2}$ and has a mode waist radius of $w_0\approx N^{1/2}\gamma\lambda/\pi$. The FEL optical mode typically has more than 90% of the power in the fundamental mode described by these parameters.

ACKNOWLEDGMENTS

The authors are grateful for support from ONR, NAVSEA, and the JTO.

Corresponding Author: 831-656-2765, Colson@nps.edu

Table 1: Free Electron I	Lasers (2004)	
--------------------------	---------------	--

EXISTING FELs	λ (μm)	$\sigma_z(ps)$	E(MeV)	I(Å)	Ň	$\lambda_0(cm)$	K(rms)	
Italy (FEL-CAT)	760	15-20	1.8	5	16	2.5	0.75	RF,O
UCSB (mm FEL)	340	25000	6	2	42	7.1	0.7	EA,O
Novosibirsk (RTM)	120-180	70	12	10	2x33	12	0.71	RF,O
Korea (KAERI-FEL)	97-1200	25	4.3-6.5	0.5	80	2.5	1.0-1.6	MA,O
Himeji (LEENA)	65-75	10	5.4	10	50	1.6	0.5	RF,O
UCSB (FIR FEL)	60	25000	6	2	150	2	0.1	EA,O
Osaka (ILE/ILT)	47	3	8	50	50	2	0.5	RF,O
Osaka (ISIR)	40	30	17	50	32	6	1	RF,O
Tokai (JAERI-FEL)	22	2.5-5	17	200	52	3.3	0.7	RF,O
Bruyeres (ELSA)	20	30	18	100	30	3	0.8	RF,O
Osaka (FELI4)	18-40	10	33	40	30	8	1.3-1.7	RF,O
UCLA-Kurchatov	16	3	13.5	80	40	1.5	1	RF,A
LANL (RAFEL)	15.5	15	17	300	200	2	0.9	RF,O
Stanford (FIREFLY)	15-80	1-5	15-32	14	25	6	1	RF,O
UCLA-Kurchatov-LANL	12	5	18	170	100	2	0.7	RF,A
Maryland (MIRFEL)	12-21	5	9-14	100	73	1.4	0.2	RF,O
Beijing (BFEL)	5-20	4	30	15-20	50	3	1	RF,O
Dresden (ELBE1)	3-22	10	40	8	2x34	2.73	0.3-0.8	RF,O
Korea (KAERI HP FEL)	3-20	10-20	20-40	30	30x2	3.5	0.5-0.8	RF,O
Newport News (IR demo)	3, 6, 10	0.2	160	270	25	20	4.5	RF,O
Darmstadt (FEL)	6-8	2	25-50	2.7	80	3.2	1	RF,O
BNL (HGHG)	5.3	6	40	120	60	3.3	1.44	RF,A
Osaka (iFEL1)	5.5	10	33.2	42	58	3.4	1	RF,O
Tokyo (KHI-FEL)	4-16	2	32-40	30	43	3.2	0.7-1.8	RF,O
Nieuwegein (FELIX)	3-250	1	50	50	38	6.5	1.8	RF,O
Duke (MARKIII)	2.7-6.5	3	31-41.5	20	47	2.3	1	RF,O
Stanford (SCAFEL)	3-13	0.5-12	22-45	10	72	3.1	0.8	RF,O
Orsay (CLIO)	3-53	0.1-3	21-50	80	38	5	1.4	RF,O
Vanderbilt (FELI)	2.0-9.8	0.7	43	50	52	2.3	1.3	RF,O
Osaka (iFEL2)	1.88	10	68	42	78	3.8	1	RF,O
Nihon (LEBRA)	0.9-6.5	<1	58-100	10-20	50	4.8	0.7-1.4	RF,O
UCLA-BNL (VISA)	0.8	0.5	70.9	250	220	1.8	1.2	RF,S
BNL (ATF)	0.6	6	50	100	70	0.88	0.4	RF,O
Dortmund (FELICITAI)	0.42	50	450	90	17	25	2	SR,O
BNL NSLS (DUVFEL)	0.1	0.7	300	500	256	3.9	0.7	RF,SH
Orsay (Super-ACO)	0.3-0.6	15	800	0.1	2x10	13	4.5	SR,O
Osaka (iFEL3)	0.3-0.7	5	155	60	67	4	1.4	RF,O
Okazaki (UVSOR)	0.2-0.6	6	607	10	2x9	11	2	SR,O
Tsukuba (NIJI-IV)	0.2-0.6	14	310	10	2x42	7.2	2	SR,O
Italy (ELETTRA)	0.2-0.4	28	1000	150	2x19	10	4.2	SR,O
Duke (OK-4)	0.193-2.1	0.1-10	1200	35	2x33	10	0-4.75	SR,O
ANL (APSFEL)	0.13	0.3	399	400	648	3.3	2.2	RF,S
DESY (TTF1)	0.08-012	0.04	250	3000	492	2.73	0.81	RF,S

PROPOSED FELs	λ(μm)	$\sigma_z(ps)$	E(MeV	I(A)	N	λ ₀ (c	K(rms)	
)			m)		
Tokyo (FIR-FEL)	300-1000	5	10	30	25	7	1.5-3.4	RF,O
Netherlands (TEUFEL)	180	20	6	350	50	2.5	1	RF,O
Rutgers (IRFEL)	140	25	38	1.4	50	20	1	MA,O
Novosibirsk (RTM1)	3-20	10	50	20-100	3x33	6	2	RF,O
Dresden (ELBE)	30-750	1-5	10-40	30	45	5	0.4-1.6	RF,O
Daresbury (4GLS-IRFEL)	5-100	0.2-1	50	100	100	4	2	RF,O
Novosibirsk (RTM)	2-11	20	98	100	4x36	9	1.6	RF,O
Frascati (SPARC)	0.533	0.1	142	500	6x71	3	1.3	RF,S
TJNAF (UVFEL)	0.25-1	0.2	160	270	60	3.3	1.3	RF,O
Hawaii (FEL)	0.3-3	2	100	500	84	2.4	1.2	RF,O
Harima (SUBARU)	0.2-10	26	1500	50	33,65	16,32	8	SR,O
Shanghai (SDUV-FEL)	0.5-0.088	1	300	400	400	2.5	1.025	RF,O
Frascati (COSA)	0.08	10	215	200	400	1.4	1	RF,O
Daresbury (4GLS-VUV)	0.4-0.1	0.1-1	600	300	150	5	2	RF,O
Daresbury (4GLS-XUV)	0.1-0.01	0.1-1	600	2000	1000	2	1	RF,S
Duke (OK-5,VUV)	0.03-1	0.1-10	1200	50	4x32	12	3	SR,O
DESY (TTF2)	0.006	0.17	1000	2500	981	2.73	0.9	RF,S
Italy (SPARX)	0.0015	0.1	2500	2500	1000	3	1.2	RF,S
BESSY (Soft X-ray)	0.0012	0.08	2300	3500	1450	2.75	0.9	RF,S
Trieste (FERMI)	0.001-0.1	0.1	3000	2500	570-1140	3.5	1.2	RF,S
RIKEN (SPring8 SCSS)	0.00036	0.5	1000	2000	1500	1.5	1.3	RF,S
MIT (Bates X-Ray FEL)	0.0003	0.05	4000	1000	1500	1.8	2	RF,S
SLAC (LCLS)	0.00015	0.07	14350	3400	3328	3	3.7	RF,S
DESY (TESLA)	0.0001	0.08	30000	5000	4500	6	3.2	RF,S
Pohang (PAL X-FEL)	0.0003	0.1	3000	4000	6000	1.5	1.1	RF,S

 Table 2: Proposed Free Electron Lasers (2004)

Table 3: References and Websites for Existing FELs

EXISTING FELs	Internet Site or Reference
ANL (APSFEL)	J. W. Lewellen et. al., NIM A483, 40 (2002).
Beijing (BFEL)	http://bfel.ihepa.ac.cn
BNL NSLS (DUVFEL)	http://www.nsls.bnl.gov/organization/Accelerator/DUVFEL
BNL (ATF)	K. Batchelor et. al., NIM A318, 159 (1992).
BNL (HGHG)	A. Doyuran et. al., NIM A475, 260 (2001).
BNL (VISA)	A. Tremaine et. al., NIM A483, 24 (2002).
Bruyeres (ELSA)	P. Guimbal et. al., NIM A341, 43 (1994).
Darmstadt (FEL)	http://linaxa.ikp.physik.tu-darmstadt.de/richter/fel
DESY(TTF1)	http://www-hasylab.desy.de/facility/fel
Dortmund (FELICITAI)	http://www.delta.uni-dortmund.de/pub/fel/FEL.html
Duke (MARKIII)	http://www.fel.duke.edu/lightsources/mk3.html
Duke (OK-4)	http://www.fel.duke.edu
Himeji (LEENA)	http://www.lasti.himeji-tech.ac.jp/NS/LEENA/LEENA_HP.html
Italy (ELETTRA)	http://www.elettra.trieste.it/projects/euprog/fel
Italy (FEL-CAT)	A. Doria et. al, Phys. Rev. Lett. 80, 2841 (1998).
Korea (KAERI HP FEL)	http://www.kaeri.re.kr/fel/index.php
Korea (KAERI-FEL)	http://www.kaeri.re.kr/fel/index.php
LANL (RAFEL)	http://www.lanl.gov/orgs/ibdnew/usrfac/userfac03.html
Maryland (MIRFEL)	http://www.ireap.umd.edu/FEL
Newport News (IR demo)	http://www.jlab.org/FEL
Nieuwegein (FELIX)	http://www.rijnh.nl/n4/n3/f1234.htm
Nihon (LEBRA)	http://www.lebra.nihon-u.ac.jp
Novosibirsk (RTM)	http://www.inp.nsk.su
Okazaki (UVSOR)	http://uvsor-ntserver.ims.ac.jp
Orsay (CLIO)	http://www.lure.u-psud.fr/CLIO.HTM
Orsay (Super-ACO)	M. E. Couprie et. al., NIM A407, 215-220 (1998).
Osaka (FELI4)	T. Takii et. al., NIM A407, 21-25 (1998).
Osaka (iFEL1)	http://www.fel.eng.osaka-u.ac.jp/english/index_e.html
Osaka (iFEL2)	http://www.fel.eng.osaka-u.ac.jp/english/index_e.html
Osaka (iFEL3)	http://www.fel.eng.osaka-u.ac.jp/english/index_e.html
Osaka (ILE/ILT)	N. Ohigashi et. al., NIM A375, 469 (1996).
Osaka (ISIR)	http://www.ei.sanken.osaka-u.ac.jp
Stanford (FIREFLY)	K. W. Berryman and T. I. Smith, NIM A375, 6 (1996).
Stanford (SCAFEL)	H. A. Schwettman et. al., NIM A375, 662 (1996).
Tokai (JAERI-FEL)	R. Hajima et. al., NIM A507, 115 (2003).
Tokyo (KHI-FEL)	M. Yokoyama et. al., NIM A475, 38 (2001).
Tsukuba (NIJI-IV)	K.Yamada et. al., NIM A475, 205 (2001).
UCLA-Kurchatov	http://pbpl.physics.ucla.edu
UCLA-Kurchatov-LANL	http://pbpl.physics.ucla.edu
UCSB (FIR FEL)	http://sbfel3.ucsb.edu
UCSB (mm FEL)	http://sbfel3.ucsb.edu
Vanderbilt (FELI)	http://www.vanderbilt.edu/fel

Table 4: References for Proposed FELs

PROPOSED FELs	References for Proposed FELs
BESSY (Soft X-ray)	M. Abo-Bakr et. al., Nucl. Inst. and Meth. A483, 470 (2002);
	Tsukuba Mo-P-07, Mo-P-08, We-P-51 (Sept 2003).
Daresbury (4GLS)	M. W. Poole and B. W. J. McNeil, Nucl. Inst. and Meth. A507,
	489 (2003).
DESY (TESLA)	R. Brinkmann et. al., Nucl. Inst. and Meth. A393, 86 (1997);
	TESLA Technical Design Report.
DESY (TTF2)	W. Brefeld et. al., Nucl. Inst. and Meth. A375, 295 (1996).
Dresden (ELBE)	F. Gabriel et. al., Nucl. Inst. and Meth. B161, 1143 (2000).
Dresden (ELBE1)	F. Gabriel et. al., Nucl. Inst. and Meth. B161, 1143 (2000).
Duke (OK-5,VUV)	V. N. Litvinenko et. al., Nucl. Inst. and Meth. A358, 369 (1995).
Frascati (COSA)	F. Ciocci et. al., A. Torre, IEEE J.Q.E. 31, 1242 (1995).
Frascati (SPARC)	A. Renieri et. al., Nucl. Inst. and Meth. A507, 507 (2003).
Harima (SUBARU)	S. Miyamoto et. al., Report of the Spring-8 International
	Workshop on 30 m Long Straight Sections, Kobe, Japan
	(August 9, 1997).
Italy (SPARX)	A. Renieri et. al., Nucl. Inst. and Meth. A507, 507 (2003).
MIT (Bates X-Ray FEL)	W.S. Graves et. al., Nucl. Inst. and Meth. AXXX, xx (2004);
	Twenty-Fifth International Free Electron Conference, Tsukuba,
	Japan (Mo-P-49, Sept 2003).
Netherlands (TEUFEL)	J. I. M. Botman et. al., Nucl. Inst. and Meth. A341, 402 (1994).
Novosibirsk (RTM)	N. G. Gavrilov et. al., Status of Novosibirsk High Power FEL
	Project, SPIE Proceedings, vol. 2988 , 23 (1997); N. A.
	Vinokurov et. al., Nucl. Inst. and Meth. A331, 3 (1993).
Novosibirsk (RTM1)	V. P. Bolotin et. al., Nucl. Inst. and Meth. A475, II-37 (2001).
Pohang (PAL X-FEL)	pal.postech.ac.kr/kor
RIKEN (SPring8 SCSS)	T. Shintake et. al., Nucl. Inst. and Meth. A507, 382 (2003);
	Tsukuba We-P-59 (Sept 2003).
Rocketdyne/Hawaii (FEL)	R. J. Burke et al, Proc. SPIE: Laser Power Beaming, Los
	Angeles, Jan. 27-28, 1994, Vol 2121.
Rutgers (IRFEL)	E. D. Shaw et. al., Nucl. Inst. and Meth. A318, 47 (1992).
Shanghai (SDUV-FEL)	Z. T. Zhao et. al, Nucl. Inst. and Meth. AXXX, xx (2004);
	Twenty-Fifth International Free Electron Conference, Tsukuba,
	Japan (We-P-65, Sept 2003).
SLAC (LCLS)	M. Cornacchia, Proc. SPIE 2998, 2-14 (1997); LCLS Design
	Study Report, SLAC R-521 (1998).
TJNAF (UVFEL)	S. Benson et. al., Nucl. Inst. and Meth. A429, 27-32 (1999).
Tokyo (FIR-FEL)	H. Koike et. al., Nucl. Inst. and Meth. A483, II-15 (2002).
Trieste (FERMI)	C. J. Bocchetta et. al., Nucl. Inst. and Meth. A507, 484 (2003);
	Tsukuba We-P-53 (Sept 2003).