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Abstract

A one-dimensional model of a free-electron laser op-
erating simultaneously with two electron beams of differ-
ent energies [1] is extended to an oscillator configuration.
The electron beam energies are chosen so that an harmonic
of the lower energy beam is at the fundamental radiation
wavelength of the higher energy beam. Potential benefits
over a single-beam free-electron laser oscillator are dis-
cussed.

INTRODUCTION

A one-dimensional model of a single pass high-gain
free-electron laser operating with co-propagating electron
beams of different energies has been described elsewhere
[1, 2]. The resonant beam energies are chosen such that
the nth harmonic radiation wavelength of the lower en-
ergy beam is at the fundamental radiation wavelength of
the higher energy beam. It was suggested that this concept
may have certain advantages over a single beam FEL am-
plifier. For example, it may be possible to seed the lower
energy beam at the fundamental wavelength and use the
coupled interaction between the two beams to transfer the
coherence properties of the seed field to the harmonic ra-
diation field. In this paper the model is extended to a one-
dimensional steady-state oscillator configuration. Numeri-
cal studies are done of the evolution of the system and the
properties of the model are explored, including the effect
of different energy spreads in the higher energy beam.

THE MODEL

The evolution of the two-beam system is given by a set
of coupled equations whose derivation and underlying as-
sumptions are outlined elsewhere [1]. For convenience the
working equations are repeated here in their final form, spe-
cialised to the case where n = 3:
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Here p and ϑ represent the energy detuning and phase of the
low energy electrons and ℘ and ϕ refer to the high energy
beam. For resonant beams p = ℘ = 0. The variable j =
1 . . .N where N is the total number of sample electrons in
each beam and F1 and F3 are the usual difference of Bessel
function factors for planar wigglers. Also
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where R3 is the ratio of currents in the high energy and low
energy beams I3/I1.

In these equations the universal scaling is via the FEL
parameter ρ3 related to the higher energy beam. Hence the
explicit appearance of the additional scaling factors R3 and
n = 3 via c1 in equation (3), and via c2 in equation (7).
By changing the value of R3 we assume the current of the
lower energy beam is altered whereas that of the higher
energy beam remains constant.

An important feature of the system is expressed in (6) -
the harmonic field has two source terms Sϕ and S3ϑ which
derive from the high and low energy beams respectively.
This feature is exploited in the work in this paper to allow
either beam to be ‘switched off’ by setting the appropriate
source term to zero. This is useful when comparing the be-
haviour of the two-beam system to the behaviour with one
or the other beam alone. An equivalent way of ‘switching
off’ the lower energy beam is by setting R3 � 1 mak-
ing the low energy beam current negligibly small. From
(8) and (7) it can be seen that this reduces the source term
|S3ϑ| � 1.

The oscillator model is very simple. At the end of each
pass the radiation intensities within the cavity are reduced
by appropriate factors depending on the mirror reflectivi-
ties then used as the input intensities for the next pass. We
assume mirror reflectivities r1 and r3 which can be varied
independently for the two radiation wavelengths. We also
assume that any other cavity losses are zero so that the out-
coupled intensities are given by

|Ai|2out = (1− ri)|Ai|2, i = 1, 3. (9)

R. Thompson et al. / Proceedings of the 2004 FEL Conference, 633-636 633

Available online at http://www.JACoW.org New Concepts



Figure 1: Both beams: third harmonic gain G3 as a func-
tion of beam detunings in p and ℘. The current ratio R 3=5,
so that the lower energy beam has one fifth the current of
the higher energy beam: G3,peak ≈ 3.1.

NUMERICAL METHODS

The system equations (2–6) were solved numerically us-
ing MATLAB and Fortran codes. The MATLAB code used
a variable step size intrinsic integration method and the For-
tran code used the standard fixed step size 4th-order Runge-
Kutta method. The codes were benchmarked against each
other and agreed well.

NUMERICAL INVESTIGATIONS

In a high-gain 2-beam amplifier, and assuming cold, res-
onant beams, linear analysis gives a threshold condition in
the beam currents for the harmonic gain to be greater than
that of the fundamental [1]:
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)
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Here this gives the condition R3 > 2.13 for the chosen
wiggler parameter aw=2. Although an intermediate gain of
z̄ = 2 is assumed, and therefore the system is not high-
gain, a current ratio of R3 = 5 was chosen and this is sub-
sequently shown in the following section to similarly result
in a greater gain in the harmonic field than the fundamental.

Model Optimisation

The optimum beam detunings, p(z̄ = 0) and ℘(z̄ = 0),
were determined by a numerical scan of the single pass gain
at the third harmonic G3. The result is shown in Fig. 1
where the peak gain is ≈ 3.1 (310%) at (p, ℘) ≈ (0.4, 1.2).
For comparison the scan was repeated for the high energy
beam only (Fig. 2), where the peak gain was found to be ≈
1.7, and the low energy beam only (Fig. 3) where the peak
gain was found to be ≈ 0.9.

Figure 2: Low energy beam ‘switched off’: third harmonic
gain G3 as a function of detunings in p and ℘. There is now
no p-dependence as expected. G3,peak ≈ 1.7.

Figure 3: High energy beam ‘switched off’: third harmonic
gain G3 as a function of beam detunings in p and ℘. There
is now no ℘-dependence. G3,peak ≈ 0.89.

The gain for the two-beam system is greater than the
sum of the gains due to the individual beams, even though
the current in the lower energy beam is only one fifth the
current in the higher energy beam. A similar scan was car-
ried out for z̄ = 0.5 and it was found that in this linear small
signal gain regime the gain for the two-beam system was
the sum of the individual gains. The small enhancement in
the nonlinear (z̄ = 2) regime is due to the non-linear cou-
pling between the two beams, there being no such coupling
in the small signal/small gain regime.

It is clear from Fig. 1 that the gain is sensitive to the
relative detuning between the two beams. Away from the
maximum at (p, ℘) ≈ (0.4, 1.2) the coupling decreases and
the surface evolves into a Madey gain curve as a function
of the low energy beam detuning p and a more asymmetric
higher gain curve as a function of the higher energy beam
detuning ℘. These curves are seen more clearly in Fig. 2
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Figure 4: Evolution of harmonic radiation field intensity
|A3|2. Current ratio R3 = 5, z̄ = 2.

and Fig. 3 where the low and high energy beams respec-
tively are ‘switched off’.

The mirror reflectivities r1 and r3 were optimised via
numerical scans to maximise the saturation intensity of the
third harmonic, |A3|2sat.

The optimum reflectivity at the fundamental was found
to be r1 < 0.45, i.e. below threshold for the fundamental
(G1 < cavity losses). Thus bunching of the lower energy
beam at the fundamental disrupts its coupling to the har-
monic field.

The optimum reflectivity for the harmonic was deter-
mined to be r3 ≈ 0.7.

For all further simulations the following values were
therefore adopted: r1 = 0.0, r3 = 0.7. Thus the funda-
mental resonant field of the lower energy beam A1 is not
stored in the cavity and so has little effect upon the coupled
interaction.

NUMERICAL EXAMPLES

A two-beam oscillator FEL with the above optimised pa-
rameters was simulated. A minimal gaussian energy spread
of σp = σ℘ = 0.1 was assumed. Fig. 4 shows the evolu-
tion of the harmonic output intensity over 50 passes. The
fundamental shows no growth due to the zero reflectivity at
that wavelength and so is not shown. The harmonic field
saturates after around 20 passes. The steepest growth in
the harmonic field (i.e. the maximum increase in intensity
over a single pass) occurs around pass 12. It can be seen
from Fig. 5 and Fig. 6 that this coincides with peaks in the
evolution of the source terms Sϕ and S3ϑ and peaks in the
bunching terms |b3| and |bϕ|. These latter terms are mea-
sures of the bunching in the lower energy beam at its third
harmonic wavelength and in the higher energy beam at its
fundamental wavelength. The harmonic radiation field is
clearly being driven here by both electron beams with the
lower current, lower energy beam being the dominant con-
tribution. The simulation was repeated twice more, each
time with one of the beams ‘switched off’. For the low

Figure 5: Evolution of harmonic radiation field source
terms Sϕ and S3ϑ. Current ratio R3 = 5, z̄ = 2.

Figure 6: Evolution of electron beam bunching parameters
|b1|, |b3| and |bϕ|. Current ratio R3 = 5, z̄ = 2.

energy beam only the source term is S3ϑ, the other source
term Sϕ having been set to zero, and vice versa for the case
of the high energy beam only. The total source terms for
the three cases are shown in Fig. 7. It is seen that for the
coupled interaction the source term of the harmonic field is
significantly greater than for either of the two beams indi-
vidually.

EFFECT OF ENERGY SPREAD

The equations (2–6) were solved numerically with the
same parameters as before, but now with a variation in the
higher energy beam energy spread σ℘. This was done both
for the case of the higher energy beam alone (by setting
R3 = 1000) and for the coupled two-beam oscillator, with
R3 = 5 as before. The results are shown in Fig. 8 and
Fig. 9 respectively. The significance of the results is il-
lustrated by considering first the performance due to the
single electron beam, and then the change in performance
by adding a lower energy beam of one fifth the current. For
a minimal energy spread in the higher beam, σ℘ = 0.1, the
saturation intensity |A3|2sat is increased by 18% from 1.9 to
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Figure 7: Source terms for the two beam oscillator and for
the low energy and high energy beams individually.

Figure 8: Evolution of the harmonic intensity in the two-
beam oscillator for varying gaussian energy spreads σ℘ in
the higher energy beam.

Figure 9: Evolution of the harmonic intensity with the
lower energy beam switched off, for varying gaussian en-
ergy spreads σ℘ in the higher energy beam.

σ℘ = 0.1 σ℘ = 1.4
|A3|2sat High beam only 1.9 0.8

Two beams 2.25 1.5
Increase 18% 87%

Nsat High beam only 50 150
Two beams 30 50

Decrease 40% 66%

Table 1: Changes in saturation intensity |A3|2satand satu-
ration time Nsat due to the introduction of a lower energy
beam of one fifth the current, for different energy spreads
σ℘ in the higher energy beam.

2.25 and the number of passes to saturation, N sat, reduced
by 40% from 50 passes to 30 passes. However as the en-
ergy spread in the higher beam is increased the effect of
adding the lower energy beam becomes more significant—
for σ℘ = 1.4 the saturation intensity |A3|2sat is increased
by 87% from 0.8 to 1.5 and Nsat reduced by 66% from 150
passes to only 50 passes. These figures are summarised in
Table 1.

These preliminary results examining the effect of en-
ergy spread in the higher energy beam deserve more study
but give an initial indication of the the potential benefit of
adding a smaller current, lower energy beam to the higher
energy beam.

CONCLUSION

A model of a one-dimensional two-beam oscillator free-
electron laser has been presented and investigated numer-
ically in the steady-state regime for the case where the
current in the lower energy beam is one-fifth of the current
in the higher energy beam. It has been seen that in the
mildly nonlinear regime of z̄ = 2 considered here, the gain
of the coupled two-beam system is enhanced slightly over
that obtained from a summation of the gains obtained from
the individual beam interactions. It is seen that in the am-
plification phase before saturation the increase in intensity
of the third harmonic is driven by both electron beams si-
multaneously. The effect of energy spread in the higher
energy beam has been investigated and there is evidence
that a two-beam oscillator may allow for a reduction in the
beam quality requirements.

Further analysis is required over a wider range of the
multi-parameter space defining the system before any
definitive statements can be made as to whether the two-
beam FEL oscillator offers real prospects of improvement
over that available from a single beam interaction only.
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