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Abstract 
Recently a new high-power terahertz FEL has been put 

in operation at the Siberian Center for Photochemical 
Research in Novosibirsk. The first lasing at the 
wavelength near 140 micrometer was achieved in April 
2003. Since then some experimental data were obtained 
which required theoretical explanation. In this paper we 
use a simple 1-D model for numerical simulations of the 
FEL operation. The model is based on the excitation of 
multiple longitudinal radiation modes of the optical 
resonator by the charged discs. We restrict our 
consideration to the transverse fundamental mode only. 
This approximation is valid in the case of long-wave 
FELs. We compare the results of numerical simulations 
with some analytical estimates and experimental data. 

INTRODUCTION 
The Novosibirsk high power FEL started operation 

recently [1]. It operates in CW mode at terahertz band 
using simple two-mirror optical resonator. The computer 
code was created to provide simulations for all measured 
data. As the beam transverse sizes are significantly less 
than the radiation eigenmode size, it is enough to use a 
one-dimensional code. 

MODEL DESCRIPTION AND BASIC 
EQUATIONS 

Electron beam in our model is presented as a set of thin 
rigid disks with Gaussian transverse distribution of 
charge, which is supposed to be the same for each disk. 
The total charge of a disk is equal to the total charge of 
the bunch, divided by the number of disks and the charge-
to-mass ratio is the same as for a single electron. We 
neglect the influence of the radiation field on the 
transverse motion of a disk. It means that transverse 
trajectory is definitely determined by the undulator field 
and the disk has only the longitudinal degree of freedom. 
We also neglect betatron oscillations and include their 
contribution to the longitudinal velocity as an additional 
energy spread. It is convenient to use the longitudinal 
spatial coordinate z as an independent variable. In this 
case the system of equations for the longitudinal motion 
can be written as 
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where n is the disk number, ( )∆zV  is the longitudinal 

velocity, nτ  is the time delay with respect to the 

reference particle with energy 0γ , n∆  is the relative 

energy deviation, xE  is radiation electrical field, 

averaged over disk charge distribution. ( )zx′  is the 

transverse trajectory angle in x-z plane, in our 
approximation it depends only on z coordinate, and in the 

case of planar undulator ( ) ( )zk
K

zx wsin
0γ

−=′ , where 

K is the undulator deflection parameter, wk  is the 

undulator wave number. 
The radiation field inside the optical resonator may be 

represented as the linear combination of the resonator 
eigenmodes. Taking into account small transverse size of 
electron beam and relatively high damping rate for high-
order transverse modes, one can restrict the consideration 
to the fundamental transverse mode only. Then the on-
axis radiation electric field may be represented as 
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For the numeric calculations it is convenient to consider 
the discrete spectrum wave packet with the carrier wave 

number k0: 0
0
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, m is integer, and T0 is the 

envelope period. T0 have to be chosen much more, than 
the packet duration (typically, of the order of the electron 
bunch length). Using this field expansion, one can derive 
the FEL equations for a single pass of the wave packet 
and particles (charged disks) through the undulator 
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Here we introduced the following set of dimensionless 

variables and constants: nn ck τϕ 0= , zkw=θ , 
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the Alfven current, S0 is an effective area of radiation (the 
power over the on-axis intensity), and 

( )212 22
00 Kkk w += γ  is chosen. 

One can easily check that the system Eq. (3) conserves 
the total energy 
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It also worth noting that this system can be derived 
from the Hamiltonian 
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, ( )kk barg=Ψ ; nk ϕΨ ,  and 

nkI ∆,  are canonical coordinates and momenta 

respectively. Then the existence of the integral Eq. (4) 
follows from the invariance of Eq. (5) with respect to the 
transformation 

 snn δϕϕ +→ , ( ) skkk δδΨΨ ++→ 1 . 

NUMERIC APPROXIMATION AND 
COMPUTER CODE DESCRIPTION 

To obtain the numeric solution of Eq.(3) we used the 
following difference scheme 
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where j is the step number, h is the step size. This scheme 
implements a canonical transformation of the phase 
space. It also conserves the following value 
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which corresponds to the energy integral (4). 
The computational algorithm, which directly followed 

from Eq.(6), was realized in a simple computer code. The 
code simulates reiterated passes of the radiation wave 
packet and the electron beam through the undulator. At 
the beginning of each pass a new particle initial 
distribution is formed, and all amplitudes of the radiation 
field modes bk are reduced with accordance to the losses 
of the optical resonator. The center of a new bunch is 

delayed by the optical resonator length L detuning δT = 
1/f0-2L/c (f0 is the bunch repetition rate). We used 
Gaussian distribution for energy ∆n and uniform, 
parabolic or Gaussian distributions for coordinate ϕn. The 
typical number of radiation modes is 800 and the number 
of particles is 1000. 

Accuracy of the code was checked for the small-signal 
low-gain calculations. The obtained dependences for the 
gain showed a very good agreement with the theoretical 
expressions.  The results of simulation with the real FEL 
parameters are presented below. 

SIMULATION RESULTS 
Simulations were carried out with the Novosibirsk FEL 

parameters [1]. The dependence of the average radiation 
power inside the optical resonator on the pass number for 
different detunings is presented at Fig. 1. One can see that 
the radiation power reaches saturation after few hundreds 
of electron bunch passes through the undulator. For some 
detunings there was no constant saturation level and the 
power was non-stationary. 
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Figure 1: Dependence of average radiation power inside 

the optical resonator on pass number for different 
detunings δf/f0=-cδT/(2L).  

The maximum level of average power inside the optical 
resonator at zero detuning is about 12 kW, which is in a 
good agreement with the value obtained in the 
experiment. 

Spectral density of radiation in the case of zero 
detuning is shown in Fig. 2. The presence of several 
bands in spectrum apparently indicates the development 
of side-band instability. 
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Figure 2: Spectral density distribution for zero detuning. 

The corresponding power distribution in time domain is 
presented at Fig. 3. It can be seen, that the radiation wave 
packet in this case consists of three short pulses. The 
distance between adjacent pulses is slightly shorter then 
total slippage at the undulator length. The mechanism of 
such short pulse generation was described analytically in 
[2]. 
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Figure 3: Power distribution over the wave packet length 
for zero detuning. The dot line corresponds to the beam 

current profile. 

For large enough nonzero detuning the spectrum of 
radiation is narrow as it shown on Fig. 4. Similar 
spectrum with FWHM ~ 0.3% has also been observed in 
the experiment for some regimes. 
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Figure 4: Spectral density distribution for the detuning 
5

0 1065.2 −×=ffδ . 

Power distribution in time domain for nonzero detuning 
is presented at Fig. 5. The wave packet length in this case 
is much longer then in the previous one. 
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Figure 5: Power distribution for the detuning 
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In Fig. 6 one can see so-called detuning curve. 
Dependence, presented at this figure, shows, that there is 
a narrow peak near the zero detuning. The similar results 
were reported in [3]. 
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Figure 6: The average power vs. the detuning. 

CONCLUSION 
The results of calculations demonstrate a good 

agreement with the measured ones. The lack of 
information about the particle distribution in the real 
electron beam is, probably, the main limiting factor for 
the comparison of the experimental data and the 
simulation results. Calculations for more advanced FEL 
magnetic systems (multisection and tapered undulators, 
optical klystron, electron outcoupling, etc.) are planned. 
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