

SPPS: New Science on the way to LCLS

Aaron Lindenberg SLAC/SSRL

> FEL2004 9/02/04

SPPS Collaboration

UC Berkeley

Roger W. Falcone Aaron Lindenberg Donnacha Lowney Andrew MacPhee

APS Argonne Nat'l Lab

Dennis Mills

MSD Argonne National Lab

Paul Fuoss Brian Stephenson Juana Rudati

U. of Michigan

David Reis Philip H. Bucksbaum Adrian Cavalieri Soo Lee David Fritz Matthew F. DeCamp

NSLS

D. Peter Siddons Chi-Chang Kao

Uppsala University

Janos Hajdu David van der Spoel Richard W. Lee Henry Chapman Carl Calleman Magnus Bergh Gosta Huldt

DESY

Jochen Schneider Thomas Tschentscher Horst Schulte-Schrepping

BioCARS

Keith Moffat Reinhard Pahl

ESRF Francesco Sette Olivier Hignette

SLAC

Paul Emma Patrick Krejcik Holger Schlarb John Arthur Sean Brennan Roman Tatchyn Jerome Hastings Kelly Gaffney

Copenhagen University

Jens Als-Nielsen

Lund University Jörgen Larsson Ola Synnergren Tue Hansen

Chalmers University of Technology Richard Neutze

Outline

- SPPS compression scheme
- SPPS characteristics (photon numbers, pulse duration, spot size...)
- First experiments
- Future experiments

Electron Bunch Compression Scheme

Particle tracking codes

(P. Krejcik et al.)

SPPS Characteristics (x-rays)

- 2 x10⁷ photons/pulse/1.5% BW at 10 Hz
- Pulse duration: ~ 80 fs
- Tunable over 8-10 keV
- Synchronization of laser/x-rays ~ 300 fs rms
- •~2 mm spot size (unfocused)
- •~250 μm (Be lens) (~3 x 10⁶ ph/pulse)
- •<1 µm (KB) (~5 x 10⁵ ph/pulse)

SPPS Laser System and Timing

• Use EO timing diagnostics to post-process pump-probe data to overcome jitter. Permits integrating mode of operation.

Ultrafast Melting Experiments in Semiconductors

• Previous experiments:

Rousse *et al. Nature* **410**, 65 (2001) Sokolowski-Tinten *et al. PRL* **87**, 225702 (2001) Siders *et al. Science* **286**, 1349 (1999) Chin *et al. PRL* **83**, 336 (1999) A.M. Lindenberg *et al. PRL* **84**, 111 (2000)

• But, melting is a difficult problem even under conditions of thermodynamic equilibrium...

(Stampfli *et al.*) PRB **49**, 7299 (1994)

Experimental Setup: Crossed-beam topography

•Azimuthal rotation allows for continuous adjustment of crystal asymmetry angle (fixing x-ray penetration depth)

•X-ray incident angle set to 0.4 degrees for all measurements, gives x-ray penetration depth < 100 nm (set by photoabsorption).

- Crossed-beam technique transforms temporal information into spatial information.
- Measures complete time history around t=0 in single shot.
- Position of edge indicates x-ray/laser timing for that shot.

Calibration of Time Axis

•Scanning optical delay line changes x-ray/laser timing, moving the edge-position within the image

- Geometrically, one expects: $fs/pixel = \frac{\delta(1 \cos \theta_L)}{\sin(\theta_B + \alpha)c}$
- Measurements are in good agreement with this geometric factor.

X-ray/Electron Bunch Timing

with location of edge in melting data to < 100 fs (60 fs rms)

Raw data

(111) vs. (220) Reflection

•Two reflections measured under identical fluence conditions and identical pump and probe penetration depths.

•
$$\frac{\tau_{(220)}}{\tau_{(111)}} = 1.62 \sim \sqrt{\frac{k_{(220)}}{k_{(111)}}} = \sqrt{\frac{8}{3}}$$

What is a liquid?

•Can be understood in terms of the topology of the instantaneous potential energy surface

•Instantaneous normal mode theory: Gives a representation of the potential energy surface at each instant in time, characterized by a set of frequencies, both real and imaginary (reflecting barriers and saddlepoints in potential surface.

•At short times, $q_{\alpha}(t) \sim v(0)t$ (inertial dynamics)

•Similar inertial dynamics observed in femtosecond optical measurements of solvation dynamics in liquids.

•Characterized by the spectral response function

$$S(t) = \frac{\nu(t) - \nu(\infty)}{\nu(0) - \nu(\infty)} \sim e^{-\frac{1}{2}\omega_{solv}^2 t^2}$$

(for short times)

coordinate

•Represents ballistic motion of individual solvent molecules.

Visualization of Liquid State Dynamics

Debye-Waller Model:

$$I(t) \sim e^{-2W}$$
$$= e^{-\frac{16\pi^2}{3}(\frac{\sin\theta}{\lambda})^2 \langle u^2(t) \rangle}$$

• Presumes that the disordering process corresponds to an ultrafast randomization of atomic positions (time-averaging is replaced by a spatial average over atomic positions.

• If dynamics are intertial for short times, predicts gaussian time-dependence (with u=vt).

Incoherent inelastic neutron scattering measures

$$S_s(k,w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} F_s(k,t) dt$$

where $F_s(k, t)$ is the self-intermediate scattering function, defined as

$$F_s(k,t) = \langle e^{i\mathbf{k}\cdot[\mathbf{r}(\mathbf{t})-\mathbf{r}(\mathbf{0})]} \rangle$$

The short time behavior of this function is gaussian and can be written as

$$F_s(k,t) = e^{-\frac{k^2 < r^2(t) >}{6}}$$

where for short times,

$$< r^{2}(t) > = \frac{3k_{B}T}{M}t^{2} - \frac{k_{B}T}{4M}\Omega_{0}^{2}t^{2}$$

inertial dynamics influence of interatomic potential

Extraction of RMS Displacements

- On short time-scales, we observe gaussian (inertial) dynamics (Q-dependent time-constant)
- Short-time behavior for (111) and (220) reflections are the same
- Extracted velocities are in good agreement with equipartition.

- Initial dynamics in ultrafast solid-liquid transition is governed by inertial dynamics, the ballistic motion of independent atoms on a softened potential surface.
- Ultrafast melting phenomena may be thought of in analogy to the intrinsic structural changes which are continuously occurring in the liquid state.
- Time-resolved diffraction measurements give direct information on short-time dynamics previously only accessible through inelastic scattering techniques.
- For a wide range of potential landscapes, the dynamics are inertial to first order in t. Better signal to noise data should allow for more detailed measurements of the time-dependent interatomic potential.

Future Experiments

• Liquid State Experiments

- Measurements of liquid structure factor S(Q,t) gives information on pair correlation function and associated dynamics of both solute and solvent.
 - -structure of H₂O -proton transfer dynamics -bond-breaking chemical reactions
- Low-repetition rate of source allows for integrating CCD detectors
- Both diffraction and spectroscopy possible.

Future Experiments: X-ray Pump/Laser Probe

0.8

0.6

effectivity

1021

e-h density [cm

- Use of micro-focusing optics for creation of near LCLS conditions (~10¹³ W/cm²)
- Measurement of secondary electron cascade dynamics
- Probing x-ray-induced damage mechanisms (limiting factor in structure determination for future XFELs)

•Solid-state dynamics:

-Vibrational excitations, structural phase transitions, strongly-correlated materials (See e.g. Sokolowski-Tintin *et al.* Nature, **422**, 237 (2003)

•Liquid-state dynamics

-Probing intrinsic fluctuations, bond-breaking, solvation dynamics

•Chemical reaction dynamics

-bond-breaking/formation, isomerizations, energy transfer, reaction intermediates (See e.g. A. Plech *et al.* PRL **92**, 125505)

•X-ray pump experiments, with goal to generate near-LCLS conditions.