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Abstract

A relativistic theory for Raman backscatteing in the
beam frame of electrons is used to find the growth rate of a
free-electron laser (FEL), in the Raman regime. First, a one
dimensional helical wiggler and an axial magnetic field are
considered. The wiggler effects on the linear dispersion re-
lations of the space-charge wave and radiation are included
in the analysis. A numerical computation is conducted to
study the the growth rate of the excited waves. It was found
that the wiggler effects on the growth rate decreases the
growth rate on both group I and group II orbits. Next, the
growth rate under an ion-channel guiding, instead of an ax-
ial magnetic field, under similar condition is calculated and
is studied numerically.

INTRODUCTION

Lab-frame analysis of a FEL with a one dimensional he-
lical wiggler and an axial magnetic field was first presented
by Kwan and Dawson [1] using fluid model. In linearizing
the relativistic factor, they included the energy exchange
between the beam and the space-charge wave but neglected
the exchange of energy between the beam and the radia-
tion. The fully relativistic treatment of this problem, in the
lab-frame, was first presented by Bernstein and Friedland
[2] but they did not analyze the wiggler effect on the dis-
persion relations of the growing waves. Mehdianet al. [3]
derived a nonlinear dispersion relation, with the wiggler
effects on the dispersion relation of the excited waves in-
cluded, but they did not find the growth rate. Ion-channel
guiding of the electron beam in a FEL has been proposed
as an alternative to guiding by a solenoid (or quadrupole)
magnetic field [4]. This type of guiding involves the forma-
tion of a positive ion core by expulsion of electrons from a
preionized plasma channel into which the electron beam is
injected. Jha and Kumar [5] have calculated the growth rate
with the higher order relativistic terms neglected.

BEAM-FRAME ANALYSIS WITH AXIAL
MAGNETIC FIELD

A relativistic and cold electron beam is passed through
a uniform static axial guide magnetic field, and a static
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helical (wiggler) magnetic field, which is periodic along
the guide axis. In the beam frame of reference, the wig-
gler field comprises a propagating electromagnetic (pump)
wave, which undergoes stimulated Raman backscattering.
This process is characterized by the parametric decay of the
pump wave(ω1, k1) into a forward-scattered space-charge
wave (ω2, k2) and a backscattered electromagnetic wave
(ω3, k3). The transverse and longitudinal components of
the velocity are treated as relativistic. The unperturbed
state in the beam frame is characterized byn(0) = n0/γ||,
and

E(0) =
−γ||v||Bw

2c
(x̂− iŷ)exp[i(k1z + ω1t)] + c.c.,

(1)

B(0) =
( −iγ||Bw

2
(x̂− iŷ)exp[i(k1z + ω1t)] + c.c.

)

+ẑB0, (2)

V(0) =
iγ||vw

2
(x̂− iŷ)exp[i(k1z + ω1t)] + c.c.,(3)

vw =
ΩwLv||

(Ω0L − γ0kwv||)
.

Perturbation composed of a longitudinal plasma wave
(ω2, k2) and a transverse backscattered electromagnetic
wave (ω3, k3) are considered. The frequencies and wave
numbers satisfy the phase matching conditions,ω3 = ω2−
ω1 andk3 = k2 − k1. These waves are assumed to vary as
exp[i(k2z + ω2t)], andexp[i(k3z + ω3t)]. The amplitudes
of the longitudinal space-charge wave areE2, V2, andn2

and the x and y components of the radiation areE3, B3,
andV3.

The relativistic momentum equation in the beam frame

mγdV/dt + mVdγ/dt = −eE− ec−1V× B, (4)

with dγ/dt = −e/(mc2)V.E and with the use of the lin-
earized relativistic factor, can be linearized as follows

mγ0γ
−1
||

[∂V(1)

∂t
+

(
V(0).∇V(1) + V(1).∇V(0)

)]

+mc−2γ3
0γ−3

||

(∂V(0)

∂t
V(0).V(1)
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+V(0).V(1)V(0).∇V(0)
)
− ec−2

(
V(0)V(0).E(1)

+V(0)E(0).V(1) + V(0).E(0)V(1)
)

= −e
(
E(1)

+c−1V(0) × B(1) + c−1V(1) × B(0)
)
. (5)

After substituting the first order quantities in Eq. (5),
and making use of the phase matching-conditions in the
coupling terms, the terms corresponding to(ω2, k2) and
(ω3, k3) phases will give equations for the longitudinal
space-charge wave and the transverse wave (radiation), re-
spectively. The fluid-Maxwell equations will be

mγ0γ
−1
|| ω2V2 = ieE2 − ec−1γ||VwB3 + ec−1γ||BwV3

(6)

mγ0γ
−1
||

(
2ω3V3 − k1γ||VwV2

)
−mc−2ω1γ

3
0γ−1

||

×V 2
wV3 − ec−2

(
γ2
||V

2
wE3 − c−1γ2

||V||VwBwV3

)

= −2eE3 − 2ec−1B0V3 + eγ||BwV2, (7)

ω2n2 + k2n0V2 = 0, (8)

4πen0V2 = iω2E2, (9)

k3cE3 = −ω3B3, (10)

−k3cB3 = 4πen0V3 − 2πeγ||Vwn2 + ω3E3. (11)

Equations (6)-(11) form a system of linear homogenious
algebraic equations. The necessary and sufficient condition
for a nontrivial solution is the dispersion relation

(
ω2

2 − ω2
pΦ

)(
k2
3c

2 − ω2
3 +

ω2
pω3

ωc + ω3
+ Ψ

)

= −
ω2

wk2ω1ω
2
p

2k2
w

(
ω1 − ωc

)
[ k3ω1

ω1 − ωc

+
k1ω3(1− a1)

ωc + ω3 − a1a2

]

×
[
1−

k1ω2ωc

k2ω1

(
ωc + ω3

) − a1a2

ωc + ω3

]
. (12)

The wiggler effects on the linear dispersion relations of the
space-charge wave and radiation are contained inΦ andΨ,
respectively. For zero wiggler, they reduce to an ordinary
longitudinal plasma oscillations and a transverse electro-
magnetic wave in a magnetized plasma. If coupling to the
radiation is removedΦ becomes unity and the wiggler has
no effect on the space-charge wave. On the other hand, if
coupling to the space-charge wave is removedΨ becomes
nonzero, which shows the direct effect of wiggler on the
radiation.

The real parts of the frequencies and wave numbers sat-
isfy the linear dispersion relations for the space-charge
wave and radiation, respectively, with all of the effects of
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Figure 1: Lab-frame spatial growth rate∆L as a function of
axial magnetic fieldB0. With wiggler effects (solid line);
without wiggler effects (dotted line).

the wiggler and guide magnetic fields included. The imag-
inary parts of the complex frequencies and wave numbers
of the growing waves may be expressed in terms of the lab-
frame growth rate∆L. This will give the lab-frame spatial
growth rate of the space-charge wave and radiation with the
lab-frame temporal growth rate taken to be zero;

∆2
L =

ω2
wk2ω

2
p

8kγ||

(
ω1 − ωc

)
[ k3ω1

ω1 − ωc

+
k1ω3(1− a1)

ωc + ω3 − a1a2

]

×
[
1−

k1ω2ωc

k2ω1

(
ωc + ω3

) − a1a2

ωc + ω3

][
k3c

2 − v||ω3

+
ω2

pv||ωc(1− a1)

2
(
ωc + ω3

)2 −
a1a2k3c

2

ωc + ω3
+

a1a2ωcωcv||

2(ωc + ω3)2

+
a1a2v||(k

2
3c

2 + ω2
3)

2(ωc + ω3)2

]−1[
ω2 −

(
k2
1c

2a1ωc(ωc

−ω1)
) (ωc − ω1 − a1a2)

2ω2
1(ω3 + ωc − a1a2)2

]−1

. (13)

The wiggler effects, throughΦ andΨ, on∆L are shown
in Fig. 1 (solid lines). Dotted lines show∆L when the
wiggler effects are neglected. Lab-frame values for the
unperturbed electron density, wiggler wavelength(period),
and Lorentz factor were taken to ben0 = 1012 cm−3 ,
λw = 2 cm, andγ0 = 2.5, respectively. The wiggler is
assumed to beBw = 1500 G. It can be observed that the
wiggler effects on the growth rate decreases the growth rate
on both group I and group II orbits.

FEL WITH ION-CHANNEL GUIDING

As an alternative to guiding by an axial magnetic field,
focusing of the electron beam can be accomplished by an
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Figure 2: Lab-frame spatial growth rate∆L as a function
of ion-channel frequencyωi/kwc with wiggler effects in-
cluded.

ion-channel. The transverse electrostatic field generated by
the ion-channel is

Ei = 2πeni

(
x̂x + ŷy

)
, (14)

and the wiggler induced velocity will be given by Eq. (3)
with vw given by

vw =
ΩwLkwv2

||

(ω2
i − γk2

wv2
||)

, (15)

whereω2
i = 2πnie

2/m is the betatron frequency squared.
With similar procedure as in the axial magnetic field case,
the dispersion relation can be found as

(
ω2 − ω2

pΦ
)(

k2
3c

2
3 − ω2

3 + ω2
p + Ψ

)

=
−k2k

2
wω2

wω2
pv3

||

2
(
ω2

i − k2
wv2

||

)2

[
k3v|| −

ω3(1− a1)
(
ω2

i − k2
1v

2
||

)

k1v||

(
ω3 − a1a2

)
]

×
[
1−

a1a2

ω3
−

ω2ω
2
1

k1k2ω3v2
||

]
. (16)

Expressing imaginary parts of the complex frequencies
and wave numbers of the growing waves in terms of the
lab-frame growth rate∆L will give the lab-frame spatial
growth rate of the space-charge wave and radiation

∆2
L =

k2k
2
wω2

wω2
pv3

||

8γ2
||ω2

(
ω2

i − k2
wv2

||

)2

[
1−

a1a2

ω3
−

ω2ω
2
1

k1k2ω3v2
||

]

×
[
k3v|| −

ω3(1− a1)
(
ω2

i − k2
1v

2
||

)

k1v||

(
ω3 − a1a2

)
][

ω2 + a1ω
2
i c2

×

(
ω2

i − k2
1v

2
||

)(
ω2 + a1a2

)

2k2
1v||

4(
ω2

3 − a1a2

)2

]−1[
k3c

2 − ω3v||

+
a1a2v||

2ω2
3

(
ω2 + a1a2

)]−1

.

(17)

Variation of the growth rate∆L with the ion-channel
guiding frequencyωi/kwc is shown in Fig. 2 with wiggler
effects on the excited waves included. Growth rate in both
group I and group II orbits increase sharply as the reso-
nance is approached.
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