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Abstract

For compact short-Rayleigh length free electron lasers
(FELs), the area of the optical beam can be thousands of
times greater at the mirrors than at the beam waist. A fixed
numerical grid of sufficient resolution to represent the nar-
row mode at the waist and the broad mode at the mirrors
would be prohibitively large. To accommodate this extreme
change of scale with no loss of information, we employ a
coordinate system that expands with the diffracting optical
mode. The simulation using the new expanding coordinates
has been validated by comparison to analytical cold-cavity
theory, and is now used to simulate short-Rayleigh length
FELs.

INTRODUCTION

A short-Rayleigh length optical cavity may give sev-
eral advantages for a high-power FEL, including reduced
mirror damage and improved beam quality [1]. However,
such a design poses difficult numerical problems. Since
the mode area expands within the cavity many thousands
of times, a very large grid is required to accurately repre-
sent the mode at both the waist and the mirrors. For ex-
ample, assume a Rayleigh length of z0 = 0.1 and a cav-
ity length of S = 30, both normalized to the undulator
length, L. Then the mode radius will expand by a factor
of (1 + (S/2)2/z2

0)1/2 = 150. If we assume 100 grid-
points in each dimension are needed to accurately represent
the mode at the waist, then 15000 gridpoints are needed at
the mirrors. A two-dimensional complex, double-precision
array of that size requires about 4 GB of RAM, beyond
the limits of many computers. Furthermore, the simula-
tion runtime increases as the square of the number of grid-
points. For the typical parameters given above, we esti-
mate it would require about 4 hours for each pass through
the optical cavity, running a three-dimensional simulation
in (x, y, t) on a 2 GHz IBM G5 processor. For some sets
of parameters, several hundred passes are needed to reach
steady-state operation, implying that the program would
take many weeks to run. Furthermore, if we wish to include
a 4th dimension in the simulation (z) to study longitudinal
modes and pulse effects, we would need at least 100 slices
in the z direction. In addition, steady-state in 4D requires
thousands of passes. The memory requirements would then
grow to 100’s of GB and the simulation runtime would in-
crease to many years. One solution to this numerical prob-
lem is to abandon a fixed Cartesian grid, and instead use a
coordinate system that expands with the diffracting optical

mode. This approach [2], [3] is explained below for the
FEL.

PARAXIAL EQUATION

As usual, the equation to be solved for the complex elec-
tric field a is the paraxial wave equation expressed in di-
mensionless coordinates,

[∂2
x + ∂2

y − (4/i)∂τ ]a(x, y, τ) = 0. (1)

The dimensionless coordinates x, y, and τ are, in
terms of the dimensioned coordinates X,Y, and Z:
x ≡ X(π/λL)1/2, y ≡ Y (π/λL)1/2, and τ ≡ Z/L,where
L is some characteristic length (which in FEL simulations
will be the undulator length), and λ is the optical wave-
length. The paraxial equation follows from the usual four-
dimensional second-order partial differential wave equa-
tion on the assumption that deviations from plane-wave be-
havior in the longitudinal (Z axis) direction are slow, a rea-
sonable condition for a laser. Eq. 1 has been studied exten-
sively [4], and is solved reliably by the application of an
FFT, except for the numerical difficulty of the expanding
beam due to diffraction.

Adopting the convention that a subscript in x, y, or τ
stands for the derivative with respect to that variable, Eq. 1
becomes

axx + ayy − (4/i)aτ = 0. (2)

TRANSFORMING THE COORDINATES

In order to see the motivation for a coordinate transfor-
mation, consider the exact fundamental-mode solution to
Eq. 2:

a(x, y, τ) = a0(πz0/A)1/2 exp(−πr2/A)eiφ, (3)

where z0 is the dimensionless Rayleigh length Z0/L, and
where the dimensionless beam area is

A = πz0[1 + τ2/z2
0 ], (4)

so that the 1/e beam radius is

w = w0[1 + τ2/(z0)2]1/2, (5)

where w0 = z0
1/2, and

φ(r, τ) = − arctan(τ/z0) + πr2τ/(Az0). (6)
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Thus, for the case that τ � z0, A ≈ πτ2/z0 and φ ≈
−π/2 + r2/τ, so that

a(r, τ) ≈ a0(z0/τ) exp(−r2z0/τ2) exp (ir2/τ) (7)

to within a constant phase factor. It is clear from Eq. 7 that
for large τ the radius of the beam expands linearly with τ ,
which suggests that we define the new “expanding” inde-
pendent variables by

x′ ≡ z
1/2
0 x/τ, (8)

y′ ≡ z
1/2
0 y/τ, (9)

and a new dependent variable v(x′, y′, τ ′) such that

a(x, y, τ) = (1/τ)v(x′, y′, τ ′) exp(ir2/τ), (10)

where r2 ≡ x2 + y2.
The phase factor exp(ir2/τ) characterizing an expand-

ing spherical wave, as well as the spherical amplitude ex-
pansion factor 1/τ, are explicitly factored out from a, so
the remaining function v has to account only for the small
diffraction effects not contained in the solution for the
Gaussian fundamental mode. In addition, the inverse de-
pendence of x′ and y′ on τ means that the dimensions of the
primed numerical grid decrease with increasing τ , i.e. in
precisely the region where the physical beam (represented
on the unprimed grid x and y) becomes large by diffraction.

Then some algebra, outlined below, shows that
v(x′, y′, τ ′) itself does indeed satisfy exactly the same
paraxial wave equation as does a(x, y, τ).

First, evaluate ax = (vx′x′
x/τ + i2xv/τ2) exp(ir2/τ),

by the chain rule applied to Eq. 10. But x′
x = z

1/2
0 /τ by

Eq. 8. So ax = (vx′z
1/2
0 /τ2 + i2xv/τ2) exp(ir2/τ). One

more derivative with respect to x yields

axx = exp(ir2/τ)[vx′x′z0/τ3 + i4vx′z
1/2
0 x/τ3 (11)

+i2v/τ2 − 4vx2/τ3].
In the same fashion, we find that

ayy = exp(ir2/τ)[vy′y′z0/τ3 + i4vy′z
1/2
0 y/τ3 (12)

+i2v/τ2 − 4vy2/τ3].
Furthermore,

aτ = exp(ir2/τ)[vx′x′
τ/τ + vy′y′

τ/τ + vτ ′τ ′
τ/τ (13)

−v/τ2 − ir2v/τ3].
Substituting Eqs. 11, 12, and 13 into Eq. 2 yields

vx′x′ + vy′y′ = 4τ2vτ ′τ ′
τ/(iz0). (14)

This can be written as the paraxial wave equation in the
primed coordinates,

vx′x′ + vy′y′ − (4/i)vτ ′ = 0, (15)

if τ ′
τ = z0/τ2. Integrating this first order differential equa-

tion for τ ′ with respect to τ yields

τ ′ = z0[1/τ1 − 1/τ ], (16)

where the constant of integration is written z0/τ1 so that
τ ′ = 0 when τ = τ1. The well-understood FFT method
may then be applied to Eq. 15, without the numerical diffi-
culty of following a rapidly-expanding wavefront.

The solution for the optical field a in the near field
(τ < τ1) is calculated in the conventional coordinates x, y,
and τ , then connected (using Eq. 10) onto the expanding-
coordinate solution in the far field (τ ≥ τ1). Remember
that τ = τ1 corresponds to τ ′ = 0.

Notice that for the special case of the fundamental mode
in expanding coordinates,

v(r′, τ ′) = (a0z0) exp[−(r′)2], (17)

which is independent of τ ′. This trivial outcome will not
apply when the fundamental mode is modified by the pres-
ence of electrons in the FEL, but does provide an opportu-
nity to compare a numerical simulation to an exact solution.
In the simulation of an actual FEL, there may be a mixture
of modes rather than just the fundamental mode, but the
transformation can handle the general case as well with no
modification.

The schematic representations in Fig. 1 and Fig. 2 show
|a| expanding as a function of τ and |v| as a function of τ ′

respectively, to illustrate the effect of the coordinate trans-
formation. In an actual numerical simulation, we calculate
|a| in the region τ = 0 to τ = τ1 in (x, y, τ), then switch
to the primed system (x′, y′, τ ′) to calculate |v| for τ > τ1,
corresponding to τ ′ > 0. Then we apply the transforma-
tion to recover a(τ) for τ > τ1. The dashed lines in the
diagrams remind us of the relative size of the integration
steps in the primed and unprimed systems.

Figure 1: Contours of constant optical field amplitude |a|
as a function of Cartesian coordinates (r, τ) for free-space
diffraction of a spherical wavefront.

In terms of the numerical integration using the expand-
ing coordinates, constant time steps ∆τ ′, correspond to
time steps in the unprimed coordinates which increase
quadratically with τ, so that ∆τ = τ2∆τ ′/z0. This is a
consequence of the Eq. 16, and the effect shows clearly in
the progression of integration “slice” size in Fig. 3.

FREE-SPACE DIFFRACTION

The upper left picture in Fig. 3 shows a cross-section of
the optical field amplitude |a| in terms of the unprimed co-
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Figure 2: Contours of constant virtual field amplitude |v| as
a function of expanding coordinates (r′, τ ′) for free-space
diffraction of a spherical wavefront.

ordinates (x, τ ) as τ goes from 0 to 3 with τ1 = 1, for
the propagation of a spherical wavefront in free space. The
color scale, shown in the lower-right, goes from blue (small
amplitude) to yellow (large amplitude). Integration for τ
between 0 and 1 is performed in the conventional coordi-
nate τ in ten steps with ∆τ = 0.1. The interval τ = 1 → 3
corresponds to expanding coordinate τ ′ = 0 → 0.2. This
is also integrated in ten equal steps, with ∆τ ′ = 0.02, and
is displayed in the lower picture as the ”virtual” field am-
plitude |v| in the primed coordinates. In this calculation the
Rayleigh length z0 = 0.3 corresponds to initial waist size
w0 = z

1/2
0 ≈ 0.55. Notice that the virtual field amplitude

|v| appears not to change with τ ′ for the fundamental mode,
which is precisely what Eq. 17 predicts. Also note that,
compared to τ, the range of τ ′ is much diminished by the
transformation Eq. 16. The optical field a for τ ≥ τ1 = 1
is then given in terms of the transformation Eqs. 8, 9, 16,
and 10. The ratio of the beam area at τ = 3 to the beam
area at the waist is 100.

The right-hand pictures in Fig. 3 are both end-on cross-
sections at τ = 3. The upper is the optical field ampli-
tude |a(x, y)|, and the lower is the virtual field amplitude
|v(x′, y′)|, also at τ = 3, corresponding to τ ′ = 0.2.

Figure 3: Free-space diffraction of a fundamental Gaussian
mode in Cartesian coordinates |a(x, τ)| (top), and expand-
ing coordinates |v(x′, τ ′)| (bottom) for z0 = 0.3, τ1 = 1,
and τ = 0 → 3.

LARGER RANGE

Another calculation, shown in Fig. 4, spans a much
larger range, τ = 0 → 30, with z0 = 0.1. Conventional
coordinates are used for for τ = 0 → 1 and primed coordi-
nates for τ = 1 → 30, for which τ ′ = 0 → 0.1. Ten equal
steps ∆τ ′ suffice to take the field all the way to τ = 30 and
preserve its Gaussian shape. The ratio of the beam area at
τ = 30 to that at its waist is (1 + 302/0.12) = 90, 000,
and is much too large for integration in conventional coor-
dinates. Using the coordinate transformation method, there
are no distortions in the outcome, which is the same as the
exact analytical result.

Figure 4: Free-space diffraction of a fundamental Gaussian
mode in Cartesian coordinates |a(x, τ)| (top), and expand-
ing coordinates |v(x′, τ ′)| (bottom) for z0 = 0.1, τ1 = 1,
and τ = 0 → 30.

Furthermore, multiple transverse modes have been accu-
rately propagated over this range.
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