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Abstract

Harmonic generation using free electron lasers (FELs)
requires two undulators: the first uses a seed laser to mod-
ulate the energy of the electron beam; the second undulator
uses the subsequently bunched beam to radiate at a higher
harmonic. These processes are currently evaluated using
extensive calculations or simulation codes which can be
slow to evaluate and difficult to set up. We describe a sim-
ple algorithm to predict the output of a harmonic generation
beamline in the low-gain regime based on trial functions
for the output radiation. Full three-dimensional effects are
included. This method has been implemented as a Math-
ematica script which runs rapidly and can be generalized
to include effects such as asymmetric beams and misalign-
ments. This method is compared with simulation results
using the FEL code GENESIS, both for single stages of
harmonic generation and for the LUX project, a design con-
cept for an ultrafast X-ray facility, where multiple stages
upshift the input laser frequency by factors of up to 200.

INTRODUCTION

There is growing interest in using seeded electron beams
to drive a free electron laser (FEL), rather than relying on
amplification of noise. This allows for controlled timing
and pulse structure. The seed can be a laser field which is
then amplified by the FEL instability, or it can be an ini-
tial current variation (bunching) in the electron beam. The
second method allows for harmonic generation, where the
output wavelength can be at a harmonic of the initial per-
turbation [1]. The possible use of multiple stages of such
harmonic generation is an area of active study, for example
in the LUX [2] project, which is an R&D project in ultra-
fast X-ray production. Here, an analytic model for predict-
ing and optimizing the FEL output from an idealized, pre-
bunched electron beam is presented, with emphasis on har-
monic generation. While previous examinations of seeded
electron beams either assume the laser field structure in ad-
vance [3, 4], or rely on summations over single-particle ra-
diation fields [5], this formalism uses a trial-function ap-
proach to obtain simple analytic prescriptions for deter-
mining the output laser field. These expressions only ap-
ply to FELs in the low-gain regime, but include the full
3-dimensional dynamics. A set of scripts implemented in
Mathematica allows for rapid calculation of the dominant
mode produced by a seeded electron beam, as well as a
means to rapidly optimize FEL and beam parameters.
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ANALYTIC MODEL

The output from the radiating undulator, or radiator, is
here approximated as a simple Gaussian mode, but is oth-
erwise kept arbitrary:

Ey = �e E0eiΦ0G(x, y, s) exp(iks− iωt), (1)

where

G(x, y, s) ≡ ZR

ZR + i(s− s0)
exp

[
−1

2
k(x2 + y2)

ZR + i(s− s0)

]

(2)
characterizes the structure of the mode. The laser wave-
length is λ = 2π/k, the frequency ω = ck, and ZR is the
Rayleigh length. The longitudinal coordinate s represents
the position along the undulator, and at s = s0 the laser is
at its waist with spot size (ZR/2k)1/2. It is possible to gen-
eralize this to include higher-order transverse modes. Note
that this field only characterizes the output from the radia-
tor, and so will be described by vacuum field solutions.

The particle motion due to the undulator is

vu �
√

2 c

γ
au sin(kus), (3)

where the undulator period is λu = 2π/ku, the normal-
ized field strength is au = eB0/mcku, and B0 is the RMS
dipole field on axis from the undulator. The dipole field on
axis is taken to be Bx = −√2 B0 cos(kus). For a single
particle, the forward motion satisfies

t = t(s = 0) +
s

vz
− a2

u

4ckuγ2
sin(2kus), (4)

where vz is the average forward velocity, and the last term
arises from the motion in a planar undulator.

The change in energy of a particle is given by

dγ

ds
= − e

mc2

Eyvu

vz
(5)

� −�e kaLG(x, y, s)ei(ks−ωt)

√
2 au

γ
sin(kus),

where the normalized (complex-valued) laser field is

aL =
eE0

mc2k
eiΦ0 . (6)

Averaging over an undulator period yields

dγ

ds
= −�m

√
2 k

2γ
auaLG(x, y, s)JJ(ξ)eiΨ, (7)
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where JJ(ξ) ≡ J0(ξ) − J1(ξ), ξ ≡ ka2
u/4kuγ2, and the

ponderomotive phase Ψ ≡ ks−ωt+kus. To leading order
in 1/γ2, this phase evolves according to

dΨ
ds

= ku + k(1− c/vz) � ku − k

2
(1/γ2 + v2

⊥/c2), (8)

where v2
⊥ is also averaged over an undulator period.

The undulator field increases with strength off-axis. For
an undulator with equal focusing in both planes, and tak-
ing into account the slight transverse dependence of au in
Eq. (3), the average of v2

⊥/c2 over an undulator period is
roughly given by

v2
⊥

c2
=

a2
u

γ2
+

2(Jx + Jy)
γβu

, (9)

where βu ≡ √
2 γ/auku is the matched beta function for

the undulator, and Jx, Jy are the transverse actions for this
value of the beta function:

Jx ≡ γ

2

[
x2

βu
+ βu

(
dx

ds

)2
]

, (10)

and similarly for Jy . If external focusing is used, however,
then Jx and Jy will no longer be constants of the motion.

Now we can expand out the equation for Ψ,

dΨ
ds

� ku

[
− δk

kr
+ 2

γ − γr

γr
− 2auδau

1 + a2
u

−
√

2
au

1 + a2
u

ku(Jx + Jy)
]
, (11)

where we define k = kr +δk, and the resonant wave vector
is

kr ≡ 2γ2
r

1 + a2
u

ku. (12)

The detuning can be expressed equivalently in terms of δk
or as a shift in undulator strength δau. Using the resonance
condition, the argument of the Bessel functions in Eq. (7)
is ξ = (1/2)a2

u/(1 + a2
u).

Finally, there is the expression for the laser field, assum-
ing the power given up by the electron beam goes into a
single mode. For the mode defined by Eq. (2), the power is

PL =
1
2
cε0E

2
0π

ZR

k
=

1
8
kZR

mc3

re
|aL|2, (13)

where re = e2/(4πε0mc2). By conservation of en-
ergy, the change in power is given by dPL/ds =
−(I/e)mc2〈(dγ/ds)〉, where I is the peak current and
〈dγ/ds〉 ≡ ∫

dX̄f(X̄)(dγ/ds). The term X̄ is used as
a shorthand to represent the full set of 6D phase space vari-
ables, and the distribution function f(X̄) is normalized so
that

∫
dX̄f(X̄) = 1. Noting that PL scales as |aL|2, we

have

d|aL|
ds

=
I

IA
2
√

2 au

γZR
JJ(ξ) �m

〈
eiΦ0G(x, y, s)eiΨ

〉
,

(14)

where IA ≡ 4πε0mc3/e � 17 kA. This is the electric field
generated by the net bunching of the electron beam, and we
wish to generalize this to include the possibility of having
no seed pulse, but a pre-bunched beam. Using the relation
that d|aL|/ds = �e(e−iΦ0daL/ds), Eq. (14) can be gener-
alized to

daL

ds
= i

I

IA
2
√

2 au

γZR
JJ(ξ)

〈
G∗(x, y, s)e−iΨ

〉
. (15)

The above average is a correction to the usual bunching
parameter, b ≡ 〈exp(−iΨ)〉. The generalized bunching
parameter will be defined as

B(s) ≡ 〈
G∗(x, y, s)e−iΨ

〉
. (16)

Harmonic generation, for example in the LUX design
concept, uses a seed laser to generate an energy modulation
in one undulator, which is then converted into microbunch-
ing by means of a chicane. The additional slippage which
results from the chicane is characterized by the parameter
R56, defined by c∆t = R56(γ−γ0)/γ0. Following this, the
bunched beam produces radiation while passing through a
second undulator. Because the bunching includes Fourier
components at harmonics of the initial laser seed, this sec-
ond, radiating undulator can be tuned to a higher harmonic
of the laser seed. Here, we consider a simplified case where
the modulator applies an energy modulation which depends
solely on the phase Ψ of the electrons. The energy distri-
bution after modulation then takes the form

f(X̄) ∝ H[(γ−γ0−κxJx−κyJy+γM sinΨ)/∆γ ]. (17)

We will consider both Gaussian and uniform energy pro-
files, where ∆γ is equal to the RMS energy spread and
maximum deviation, respectively. This energy distribution
includes the possibility for “beam conditioning”, where
there is a correlation between energy and transverse am-
plitude. The transverse component of the distribution func-
tion is exp(−Jx/εx − Jy/εy), where εx is the normalized
emittance in the x-plane. The wave vector in the following
radiator will be a harmonic, n, of the resonant wave vector
in the modulator. Thus, we will want to look at the quantity
exp(−inΨ) instead of the bunching at the first harmonic.

After the modulator, the beam passes through a disper-
sive section with a resulting phase shift ∆Ψ = k0R56(γ −
γ0)/γ0, where k0 is the wave vector corresponding to the
modulator. After this dispersive section, the higher har-
monic bunching will be given by

|〈e−inΨ〉| = Jn(kR56γM/γ0)Fγ(kR56∆γ/γ0), (18)

where k = nk0 is the wave vector of the higher harmonic.
The function Fγ depends on the form of the energy distri-
bution:

Fγ(x) =
{

exp(−x2/2),
(sin x)/x,

Gaussian
uniform.

(19)

The averages over particle energy and ponderomotive
phase within the radiator yield the same Fγ and Bessel
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function as above for the initial bunching parameter, but
with kR56 replaced with kR56 + 2kus. In addition to
G∗(x, y, s), there are extra phase terms which depend on
transverse coordinates which must be considered. Below,
we assume that the beam has the properly matched beta
function for the undulator. The final result for the general-
ized bunching at the higher harmonic is

B(s) = exp
[
ikus

(
δk

kr
− 2

γ0 − γr

γr

)]

× Jn

[
(kR56 + 2kus)

γM

γ0

]

× Fγ

[
(kR56 + 2kus)

∆γ

γ0

]
ZR

ZR − i(s− s0)

× Fε(εx, cx(s), s)Fε(εy, cy(s), s), (20)

where

Fε(ε, c, s) = (1− icε)−1/2 (21)

×
(

1− icε +
krβuε/γ0

ZR − i(s− s0)

)−1/2

.

The quantity

cx(s) ≡ 2kus

(√
2

2
ku

au

1 + a2
u

− κx

γr

)
− κx

γr
kR56 (22)

is related to the slippage due to transverse emittance, and
similarly for cy(s). If it is the strength of the undulator
which is being tuned, the detuning term δk/kr can be re-
placed with 2auδau/(1 + a2

u).
The laser field at the end of the radiator is then given by

aL = i
I

IA
2
√

2 au

γZR
JJ(ξ)

∫ L

0

B(s)ds, (23)

and the laser power is given by Eq. (13).

TRIAL FUNCTIONS

The result is still not fully defined because ZR and s0

are free parameters. In general, after fixing ZR and s0,
any radiation field can be described using a sum of nor-
mal modes, but here we are restricting attention to a single,
Gaussian mode. Because the exact result will include the
power contained within all these modes, the analytic result
is expected to always fall below the correct value. This
suggests varying the free parameters to maximize the out-
put power, yielding a greatest lower bound to the correct
result.

This method is essentially a trial function approach, and
any trial function which is a valid vacuum laser field can
be used. The closer the trial function is to the exact result,
the more accurate this estimate for the power will be. Fur-
thermore, the prediction for the laser power is expected to
be second-order accurate compared to the optimized trial
function; in other words, even a poor approximation to

the laser field can result in a good estimate for the out-
put power. In the configurations being considered, a pure
Gaussian mode is expected to be a reasonable approxima-
tion to the FEL output except in the emittance-dominated
regime, ε/γ0

>∼ λ/(4π). In this paper, only a simpli-
fied FEL configuration is considered, but the trial function
method applies to more general cases as well.

The resulting integrals are simple enough to implement
as a Mathematica script, which allows for rapid optimiza-
tion. Because the optimization procedure is to maximize
the output power, any additional constraints (undulator
field, R56, or energy modulation) can be simultaneously
optimized to obtain the largest possible output power. Thus
any optimizations performed on the beamline can occur si-
multaneously with the trial function optimization for ZR

and s0, greatly reducing the computational time required.

SIMULATION RESULTS

FEL simulations using the GENESIS code [6] have been
compared with this analytic theory. Two cases are consid-
ered, the first stage of a cascade which converts 200 nm
wavelength to 50 nm, and the final stage which converts
3.13 nm wavelength to 1.04 nm. All sections are assumed
to use planar undulators.

For a given set of trial functions, the analytic model finds
the closest fit to the actual radiation, and predicts a lower
bound on the total output power. Even if the trial function
does not accurately represent the radiation field produced
by the FEL, the prediction for the output power may still
serve as a good estimate.

Table 1: Comparison between analytic model and simula-
tions using GENESIS for two case studies.

Analytic GENESIS:
Case Results Theory M2 ≡ 1 fit M2

50 nm PL (MW) 130.3 134.2 134.2
ZR (m) 1.12 0.94 0.97
s0 (m) 1.20 1.19 1.21
M2 ≡ 1 ≡ 1 1.04

1.04 nm PL (MW) 35.1 39.0 39.0
ZR (m) 52.7 49.0 33.0
s0 (m) -10.4 -14.6 0.73
M2 ≡ 1 ≡ 1 1.72

The electron beam parameters are: I = 500 A, γ0 =
6067, and the normalized emittances are εx = εy = 2 µm.
Results for the two cases considered are given in Table 1.
The transverse mode structure of the output radiation is de-
scribed in terms of the M2 parameter, which is the ratio of
the emittance of the laser to the minimum emittance, λ/4π.
This parameter can also be described as the ratio of the ide-
alized Rayleigh length for the given waist diameter to the
observed Rayleigh length. In terms of power flux, the RMS
width of the laser at the waist is (λM2ZR/4π)1/2. For
the first stage, producing radiation at 50 nm by going to
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the fourth harmonic, the energy modulation is γM = 2.68,
and the chicane is set to an optimized value of R56 = 92
µm. The radiating undulator has an 8 cm period and is
2.4 m long. The electron beam is taken to be matched to
the undulator, with β = 16.28 m. The resonant undulator
strength is au = 6.709, but optimal performance occurs at
au = 6.686. An analysis of the GENESIS results show
that 7.8 MW of power lies outside the predicted Gaussian
mode. The analytic theory underestimates the total power
by 3.9 MW, a relative error of 3%. For the final stage, pro-
ducing radiation at 1.04 nm by going to the third harmonic,
the energy modulation is γM = 1.10, and the idealized chi-
cane uses R56 = 3.2 µm. The radiating undulator has a 2.8
cm period and is 8.4 m long. The electron beam is taken
to be matched to the undulator, with β = 29.00 m. The
resonant undulator strength is au = 1.3186, but optimal
performance occurs at au = 1.3181. In the simulation re-
sults, 2.3 MW of power lies outside the predicted Gaussian
mode. The analytic theory underestimates the total power
by 3.9 MW, a relative error of 10%. A generalization to
trial functions having two or more transverse modes would
be desirable for more accurate results.

Figure 1: Comparison of analytic theory with simulations
using GENESIS. Results for harmonic generation at 50 nm
and 1.04 nm, as the energy modulation γM is varied.

The dependence of the output radiation on the energy
modulation is shown in Figure 1, and also shows good
agreement between the analytic model and numerical sim-
ulations. The value of R56 is re-optimized for each case.
For short wavelengths, FEL performance is more sensitive
to the energy spread, as slippage along the length of the
undulator leads to debunching of the electron beam. The
optimal power of 60 MW can only be increased either by
using a different undulator design or by lowering the har-
monic number.

The agreement between theory and simulations only fal-
ters for the 1.04 nm case, when the magnetic fields are
tuned below the resonant value, as shown in Figure 2.
Far from resonance, there is roughly 5 MW of power in

Figure 2: Comparison of analytic theory with simulations
using GENESIS. Results for harmonic generation at 1.04
nm, as dipole field strength (au) is varied.

the form of higher-order transverse modes, with values of
M2 ∼ 10. This radiation is generated by particles having
large transverse amplitude, which also move forward more
slowly. When the magnetic field is too high these higher-
order modes do not appear, because there are no particles
moving fast enough to be in resonance. For earlier stages
which are not emittance-limited, the analytic calculations
are in much closer agreement with numerical simulations.

Other sources of error are the nonlinearity of the inter-
action, where the FEL instability or trapping may increase
the output power; the neglect of betatron motion and beta-
tron phase mixing, which may decrease the output power;
and an oversimplification of the geometry of each stage of
harmonic generation. In the above examples, the FEL in-
stability is unimportant. For example, in the 1.04 nm case,
simulations at low beam current, when the FEL gain length
is much longer than the total length of the system, would
scale to a total output power of 38.9 MW at 500 A. How-
ever, for larger values of the applied energy modulation,
nonlinear effects become important for reducing particle
slippage and maintaining a large bunching parameter.
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