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EVOLUTION OF ELECTRON BEAM
IN THE TAPERED PLANAR WIGGLER

Soon-Kwon Nant and Ki-Bum Kim
Department of Physics, Kangwon National University, Chunchon 200-701, Republic of Korea

Abstract and ifk,z < 1 andk,y < 1, the wiggler magnetic field is

. . . _derived from Eq. 1.
We have investigated the evolution of electron beam in g

the tapered planar wiggler field with a self-electric field K2z? | k2y? :
and self-magnetic fields. In order to suppress the diver- - B ((1 Tt #) COS(k“'Z)> @)

2, "
gence of emittance and spread of the electron beam by f’;ﬂjy C(?S((]Z”'L))
the three-dimensional effects on the off-axis electron and wy S Fw®

a self-generated field effects, the tapered and bent wiggler|, order to fulfill Maxwell's equations the scalar poten-
field is applied. We calculate the emittance, transverse trgz| must be a solution of the Laplace equatioh¢ = 0.
jectories and Fourier transformation of electron beam USperefore we can find the relation suchids+ k2 = k2

Y w?

ing three dimensional simulation by optimizing the magy, 4 we choose the caselas— ky, — ku/v2
=k, = ky, .

netic field strength, a tapering parameter and self-field pa- The vector potential of planar wiggler magnetic field

rar_nf_eters. This method could be expected to e_nhancg t\r/]v%ich satisfyBy, — V x A defined as
efficiency compared to those of a untapered wiggler in a
free-electron laser. By 5
Ay, = ——kizysin(ky,z)é,

K
v ®)
2,2 2,2
INTRODUCTION N f” (1+ ’%; + ’%2-” ) sin(kuw2)é,

The free-electron laser which the new electromagnetic
generation source have been active areas of research due t?he space charge and current of electron beam generate
their attractive properties, such as high efficiency, tunabI{?]

frequency from microwave to X-ray, and powerfule output e self-electric and self-magnetic fields. The Maxwell's
d ' . equations in steady state are
The quality of the electron beam plays an important role
and limits the operating wavelength, gain, and efficiency.
Free-electron laser operation often requires sufficiently
large gain, which increase when the beam current is in- o .
creased. In the high-current regime, the electron motion The self-generated electric fiel, (r) induced by the
can be altered by the self-generated field effects [1, 2, 3, 8Pace charge, azimuthal self-magnetic field induced by the
5,6, 7]. axial currentJ,(r). One can find the self-generated field

In this work, we study the evolution of electron beam irfT0m the steady state Maxwell equations. _
the tapered planar wiggler field with self-electric and self- Ve assume that equilibrium properties (electron density
magnetic fields. To suppress the divergence of emittan@d VEloCity) are uniform in the z-direction withy, /0= =
and spread of the electron beam, we apply the tapered ap@nddv,/9z = 0. And there is no equilibrium electric
bent wiggler field. field parallel to z-direction wittE - &, = 0. Wheren,, is

The emittance, transverse trajectories and Fourier tran%l-‘zl(?trlodn depsny 3nd”| IS mean f\_’IE|°C'ty of electrccj)n. Ehe
formation of electron beam are calculated using three gjacia ensity and velocity profiles are assumed to be az-

mensional simulation by optimizing the magnetic ﬁeldlmuthally symmetric about the z-axis. Therefore the den-

strength, a tapering parameter and self-field parameters_sity and velocity profiles can be written as only function
of r, which meansu,(r,0, z) = ny(r) anduy(r, 0, z) =

4
V-E=dmp, VxB="2J )
C

Up,2(r)és.
THE SELF-GENERATED FIELD AND There is no equilibrium electric field parallel to z-
EXTERNAL MAGNETIC FIELD direction withE - &, = 0.
The scalar potential of planar wiggler magnetic field ) _ 10 N
with bent pole face is V-E@) = r or (rEx(r)) = A7po(r)
10Bo(r) . 4r ®)
B V xB(r) = - é,=—J,(r)é,
¢ = —— cosh(k,x) sinh(kyy) cos(ky,z) (1) roor ¢
v where po(r) = —efy(r)is charge density,J,(r) =

*snam@kangwon.ac.kr; Tel:+82-33-250-8463; fax:+82-33-257-9689— f;,(r')ev, is axial current densityf, (r) is electron beam
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Figure 2: Electron beam profiles at the exit of the wiggler with (a) electron beam cross section, (b) transverse momentum
variation and (c) versust’ phase space. Other electron beam parameter,ate 1, © = 90° andx, = 2. Dotted(solid)
line indicater = r,(2ry).

profile function and3, = wv,c is the normalized axial ve- ity, 7, is the electron beam radius ang is the cylindrical

locity of electron. waveguide radius.

The self-generated field amplitude depend on the elec- The scalar potential and vector potential of the self-
tron beam profile. We consider Gaussian shape electrgenerated field which satisfids; = —V®, andB® =
beam. The profile functiof, (r) for the Gaussian density V x AS are
is

I‘2 1‘2
el 2 O, = ar} [F —Ei <——) —log (—)}
folr) = oy b_Q exp (—ﬁ) (6) 2 2} ®
Tmb b AZ = ésﬂbéz
wheren;,, is electron densityg,, = 7rZ is the normalized .  a o
factor and the self electric and magnetic field are whereEi(x) = [~ “—du is exponential integrate func-
) ) tion, andl’ = limy,—.o0 (3, £ —logm) ~ 0.577 is
B2(r) = _ 2ar} {1 exp (_7‘_2)] . Euler-Mascheroni constant.
T
2 2 ’ 2 (7)
s :_% 1 _ Ve HAMILTONIAN FORMALISM
9(1‘) r exp 27’2 €p
b

The Hamiltonian of relativistic test electron is
wherea = meny, w, = (4mnye?/m.)'/? is plasma fre-
quency of electron bearw, = kg is the angular veloc- H = /(cP + eA)2 + m2ct — e®, = ym.c® — ed, (9)
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Figure 3: Number of electron along the z-axis of wigglef! the wiggler witha,, =1, ©

in 2r, for various tapering parameté of wiggler field.
Other parameters arg, = 1 andk; = 2.

whereP is the canonial momentunp = P + eA/c is
the mechanial momentum; = /1 + (p/me.c)? is the
relativistic mass factorm,. is the electron rest mass,
is the electron charge and total vector potentialAis=
A, + A5+ AS.
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The electron orbits can be calculated from the equa-
tions of motion which are derived from the Hamiltonian
of Eqg. 11. Fig. 1 shows the electron trajectories in (a) the
(kwz, kywy) plane and (b k,z(kwy), kwz) plane, and (c)
the Fourier transformation for a single electon and unta-
pered wiggler case. Other parameters @fe = 1 and
Ks 2 which correspond to the wiggle magnetic field
strengthB,, = 1.78 kG and the electron beam current
I, = 1.47 kA for wiggler period),, = 6 cm and electron
beam radius;, = 0.4 cm. In the planar wiggler with bent
pole face, the electrons move periodically not only y direc-
tion but x direction.

We made the incident electron beam using the beam pa-
rameters such as electron beam endigy= 3 MeV, en-
ergy spread”; = 5 %, emittance, , = 10 7mm - mrad.

Fig. 2 shows the electron beam cross section, transevers
momentum variation andversust’ phase space at the exit
= 90° andk, = 2.

The number of electron along z-axis of the wiggleRin
for the various wiggler parametéris shown in Fig. 3. The
number of electron for the case of the tapered wiggler is
increased about 1.% compared to that of untapered case.
The wiggler tapering parameter 6f= 80° was used.

STEADY-STATE SOLUTION

Assume that y component of canonical momenjm=

Conveniently, we introduce the dimensionless potentialgy — ¢Ay/c is exact constant of the motion. Therefore, we

canonical momentum, and Hamiltonian defined by

H

Mmec?

eA =
Mmecky,’

ed,
mecky’

p-t

MeC

A= H=

s =

(10)

In the dimensionless scalar and vector potential of self-

field, the constant becomesy = k:k2 =

U

/4, wherer

assume thaf’, = 0 (i.e. p, = eA,/c) and interest the
(z, z) plane only. The Hamiltonian of Eq. 11 become

H :(1 + P2+ ((1+k2/2) sin(ky2))

1/2 (13)
— — 2 —

+ (P A)Y) T - ay

w2 /c*kZ, is the dimensionless strength of the self-field.

Therefore the dimensionless Hamiltonian is

=1+ (B A2 -3, = /132 -3,

hi =P, + kixy sin(ky,x)

_ szZ N kiyz

(11)

) sin(kqz)

wherea,, = eB,/m.c*k, is a dimensionless wiggler

field amplitude. To correct the electron energy loss in wig,

gler, the wiggler magengtic field is tapered @s(z) =
a(0) ft(2), wheref,(z) is the tapering profile function

1 for0 <z <z
1+ cp(z — 2) cos©
+ (2 — 2)%cos?2© forz> z

fe(2) (12)

wherez, is the starting position of wiggler taperin@), is
taper parameter, ang, is constant which satisfy;(z =
25,0 = 45°) = 1/2.

We can find the steady-state solugiég = 0,kyz =
/2 which satisfyr ' = ¢’ = P.’ = P, ' = 0 from the
equations of motion derived from the Hamiltonian.

2..2
x

1/2
S (R G Ly N Ly R )
One can find thé,, z( from Eq. 14.

Fig. 4 shows Poincar surface of section plot in
(kwz, P.) plane atp, = 0 for various tapering parameters
andk,xo. In the strong wiggle field regime, the electron
orbits for tapered wiggle® = 80° are more stable than
those of a untapered wiggler case.

CONCLUSION

We investigated the evolution of electron beam in the ta-
pered planar wiggler field with a self-electric field and self-
magnetic fields. To suppress the divergence of emittance
and spread of the electron beam by the three-dimensional
effects on the off-axis electron and a self-generated field
effects, the tapered and bent wiggler field was applied. We
calculated the emittance, transverse trajectories, Fourier
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Figure 4:Poincare surface of section plot in the {k, P,) plane atp, = 0 for (a) © = 80° and the various,,zo, (b)
0 = 80° andk,,c=0.615 and (cp = 90° andk,,zo=0.615. Other parameters arg = 5, k,,7,=0.4 andE;,=3 MeV.

transformation and Poingasurface of section of electron
beam using three dimensional simulation by optimizing the
magnetic field strength and a tapering parameter of axial
guide field. This method could be expected to enhance the
efficiency compared to those of a untapered wiggler in a
free-electron laser.
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